Что такое волокна ретикулярные и волокна соединительных тканей человека

Соединительные ткани

Группа соединительных тканей объединяет собственно соединительные ткани (РВСТ и ПВСТ), соединительные ткани со специальными свойствами (ретикулярная, жировая, слизистая, пигментная), скелетные соединительные ткани (хрящевая и костная). Также к соединительным тканям относится жидкая подвижная кровь, строение которой мы изучим в разделе “Кровеносная система”.

Что же общего между жидкой подвижной кровью и плотной неподвижной костью? Общим оказываются два основополагающих признака соединительных тканей:

  • Хорошо развито межклеточное вещество
  • Наличие разнообразных клеток
Собственно соединительные ткани

Рыхлая волокнистая соединительная ткань (РВСТ) содержит клетки разной формы: фибробласты (юные), фиброциты (зрелые). РВСТ содержится во всех внутренних органах, она располагается по ходу прохождения кровеносных, лимфатических сосудов и нервов, образует соединительнотканные прослойки.

Обратите внимание на название клеток: фибробласты, фиброциты – эти слова происходят от (лат. fibra — волокно). В соединительных тканях имеются три основных типа волокон:

  • Коллагеновые – обеспечивают механическую прочность
  • Эластические – обуславливают гибкость тканей
  • Ретикулярные – образуют ретикулярные сети, служащие основой многих органов (печень, костный мозг)

Плотная волокнистая соединительная ткань (ПВСТ) отличается преобладанием волокон над клетками. ПВСТ участвует в образовании сухожилий, связок, формирует оболочки внутренних органов.

Соединительные ткани со специальными свойствами

Ретикулярная ткань (от лат. reticulum – сетка) образует строму (опорную структуру) кроветворных и иммунных органов. Здесь зарождаются все клетки кровеносной и иммунной систем.

Жировая ткань состоит из скопления жировых клеток (адипоцитов). Создает резерв питательных веществ, образует подкожный жировой слой и капсулу почек. Кроме того, жировая ткань выполняет защитную (механическую) функцию, предупреждая повреждения внутренних органов, и участвует в терморегуляции.

Пигментная ткань отличается большим скоплением пигментных клеток – меланоцитов (от греч. melanos — «чёрный»), развита на отдельных участках тела: в радужке глаза, вокруг сосков молочных желез.

Слизистая (студенистая) ткань встречается в норме только в составе пупочного канатика зародыша, ее относят к эмбриональным тканям.

Скелетные соединительные ткани

К скелетным тканям относятся хрящевая и костная ткани, которые выполняют защитную, механическую и опорную функции, принимают активное участие в минеральном обмене.

Хрящевая ткань состоит из молодых клеток – хондробластов, зрелых – хондроцитов (от греч. chondros – хрящ). Межклеточное вещество упругое, содержит много воды, особенно в молодом возрасте. С течением времени воды в хряще становится меньше и его функция постепенно нарушается.

Хрящевая ткань образует межпозвоночные диски, хрящевые части ребер, входит в состав органов дыхательной системы. В хрящевой ткани, как и в эпителии, отсутствуют кровеносные сосуды, благодаря чему хрящи отлично приживаются после пересадки. Питание хряща происходит диффузно.

Хрящевая ткань выстилает поверхность костей в месте образования суставов. При нарушении в ней обменных процессов хрящевая ткань начинает заменяться костной, что сопровождается скованностью и болезненностью движений, возникает артроз.

Костная ткань состоит из клеток и хорошо развитого межклеточного вещества, пропитанного минеральными солями (составляют около 70%), преобладающим из которых является фосфат кальция Ca3(PO4)2.

В костной ткани активно идет обмен веществ, интенсивно поглощается кислород. Кости – это вовсе не что-то безжизненное, в них постоянно появляются новые и отмирают старые клетки. В кости можно обнаружить следующие типы клеток:

  • Остеобласты – молодые клетки
  • Остеоциты – зрелые клетки (от греч. osteon — кость и греч. cytos — клетка)
  • Остеокласты – отвечают за обновление кости, разрушают старые клетки

Кость состоит из компактного и губчатого вещества. Компактное вещество значительно тяжелее и плотнее губчатого, обеспечивает основополагающие функции кости: защитную, поддерживающую. В компактном веществе запасаются химические элементы. Губчатое вещество содержит орган кроветворение – красный мозг.

Структурной единицей компактного вещества является остеон (Гаверсова система). В Гаверсовом канале, расположенном в центре остеона, проходят кровеносные сосуды – источник питания для костной ткани. По краям канала лежат юные клетки, остеобласты, и стволовые клетки. Вокруг канала лежат соединенные друг с другом остеоциты, образующие пластинки.

Кость состоит из двух компонентов:

    Минеральный

Межклеточное вещество костной ткани содержит коллагеновые волокна, которые пропитаны минеральными солями, главным образом – фосфатом кальция Ca3(PO4)2, за счет чего костная ткань выполняет опорную функцию и способна выдерживать значительные нагрузки.

С возрастом доля минерального компонента увеличивается, и кость становится более ломкой и хрупкой, возникает склонность к переломам. Истончение костной ткани называется остеопороз (от греч. osteon – кость + греч. poros – пора).

Органический компонент представлен белками и жирами (липидами). За счет данного компонента обеспечивается еще одно важное свойство кости – эластичность. Если провести химический опыт и удалить из кости все соли (мацерация кости), то она станет настолько гибкой, что ее можно завязать в узел.

Органический компонент превалирует в костях новорожденных. Их кости очень эластичные. Постепенно минеральные соли накапливаются, и кости становятся твердыми, способными выдержать значительные физические нагрузки.

Происхождение

Соединительные ткани развиваются из мезодермы – среднего зародышевого листка.

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

РЕТИКУЛЯРНАЯ ТКАНЬ

Ретикулярная ткань (textus connectivus reticularis (LNH); лат. reticulum сетка; син. сетчатая ткань) — разновидность соединительной ткани, состоящей из ретикулярных клеток и ретикулярных волокон, заключенных в основное межклеточное вещество и образующих рыхлую трехмерную сеть, являющуюся основой кроветворных и лимфоидных органов.

Представления о Ретикулярной ткани формировались в течение многих десятилетий, но лишь в последние 10—15 лет, благодаря использованию достижений цитогенетики, радиобиологии, иммунологии, трансплантологии, были получены принципиально новые данные о ее дифференцировке, структуре и функции.

В эмбриогенезе Ретикулярной ткани дифференцируется из мезенхимы (см.) и в раннем постнатальном периоде постепенно приобретает строение зрелой ткани.

Ретикулярные клетки (cellulae reticulares) относят к клеткам фибробластического типа, наряду с фибробластами, хондробластами и остеобластами, объединяемыми под названием «механоциты». Ретикулярные клетки (рис. 1) имеют уплощенную, веретеновидную или звездчатую форму с гладкой поверхностью; ядро — угловатое или вытянутое. Степень развития органелл, в частности зернистой эндоплазматической сети и комплекса Гольджи (см. Гольджи комплекс), вариабельна и зависит от функционального состояния ретикулярной клетки. Соседние ретикулярные клетки или отростки одних и тех же клеток контактируют друг с другом посредством соединений типа промежуточных или десмосом (см.).

Ввиду того, что ретикулярные клетки часто трудно различить среди массы кроветворных клеток, их идентификация возможна только при использовании электронной микроскопии (см.), гистохимических методов исследования (см.) и методов иммуногистохимии (см. Иммуноморфология) или комбинации этих методов, позволяющих с высокой степенью достоверности выявлять ретикулярные клетки, а также идентифицировать их от внешне сходных с ними клеток системы мононуклеарных фагоцитов (см.).

Гистохимические свойства ретикулярных клеток определяются органными, а также видовыми особенностями. У человека ретикулярные клетки белой пульпы селезенки (см.) отличаются от макрофагов (см.) более низкой активностью эстеразы (см.) и кислой фосфатазы (см.), а от интердигитирующих клеток (разновидности мононуклеарных фагоцитов) — отсутствием активности АТФ-азы. В ретикулярных клетках лимфоцитарной короны лимф, фолликулов селезенки выявляется отчетливая активность 5′-нуклеотидазы (табл.).

Активность 5′-нуклеотидазы определяется также в ретикулярных клетках белой пульпы селезенки крыс и морских свинок, но отсутствует у кроликов. Ретикулярные клетки костного мозга мышей и крыс характеризуются активностью щелочной фосфатазы, локализующейся на их плазматической мембране. Этим признаком они отличаются от макрофагов, в к-рых выявляется активность кислой фосфатазы, локализующейся в лизосомах (см.). Такой морфол. тип ретикулярных клеток часто называют фибробластическим.

В светлых (герминативных) центрах лимфатических фолликулов селезенки и лимфатических узлов (см.) описан особый тип ретикулярных клеток — дендритные ретикулярные клетки. Их отличают крупные размеры, ядро неправильной формы с выраженным ядрышком, многочисленные гладкие пузырьки в цитоплазме. Характерным признаком дендритных ретикулярных клеток являются длинные ветвящиеся отростки с многочисленными складками, глубоко проникающие между окружающими лимфоидными клетками (рис. 2). Отростки дендритных ретикулярных клеток вместе с цитоплазматическими выпячиваниями иммунобластов (В-лимфоцитов) формируют сложную сеть в виде лабиринта. В межклеточном пространстве среди отростков локализуются микровезикулярные структуры и глобулярные плотные частицы диаметром 20—70 нм. В области контакта отростков дендритных ретикулярных клеток видны структуры типа десмосом (см.). В отличие от макрофагов с окрашивающимися включениями и других мононуклеарных фагоцитов дендритные ретикулярные клетки имеют более низкую активность эстеразы и кислой фосфатазы, но высокую активность 5′-нуклеотидазы. По ряду гистохимических признаков они могут быть сходны с мононуклеарными фагоцитами: макрофагами красной пульпы селезенки, металлофильными (аргирофильными) клетками краевой зоны лимф, фолликулов, макрофагами с окрашивающимися включениями. Решающим критерием для идентификации дендритных ретикулярных клеток является способность этих клеток связывать (но не фагоцитировать) иммунные комплексы на своей поверхности.

Ретикулярные волокна (fibrae reticulares), входящие в состав Р. т., состоят из фибрилл различного диаметра, заключенных в гомогенное, плотное основное межклеточное вещество. Фибриллы диаметром 20—50 нм имеют осевую исчерченность, характерную для зрелого коллагена. Тонкие фибриллы диаметром 10 нм локализуются по периферии ретикулярных волокон. Ретикулярные волокна всегда окутаны цитоплазмой ретикулярных клеток в виде чехла (инвагинированы в цитолемму), просвет к-рого всегда сообщается с межклеточным пространством. В лимфоидных органах сеть ретикулярных волокон развита сильнее, чем в костном мозге, причем в тимус-зависимых зонах лимфатических узлов она более рыхлая, чем в корковом и мозговом веществе.

По данным биохимического и иммунохимического анализов, ретикулярные волокна состоят из коллагена III типа (см. Коллаген) и неколлагенового компонента в виде аморфного межфибриллярного вещества с выраженными иммуногенными свойствами. В составе неколлагенового компонента идентифицированы белки (90%), углеводы (4%) и липиды (4%). Для выявления ретикулярных волокон широко используют различные варианты импрегнации серебром. В повседневную практику начинают входить иммуногистохимические и иммунофлюоресцентные методы выявления ретикулярных волокон (см. Иммуноморфология, Иммунофлюоресценция), в основе к-рых лежит использование специфических антисывороток к коллагенам разных типов.

Р. т. образует строму и является носителем специфических органных функций костного мозга и периферических лимфоидных органов (селезенки, лимф, узлов, солитарных и групповых лимф, фолликулов жел.-киш. тракта). После того как было экспериментально доказано, что ретикулярные клетки гистогенетически независимы от кроветворных, их стали относить к категории стромальных элементов, ответственных за создание специфического микроокружения, обеспечивающего миграцию, сортировку, репликацию и дифференцировку кроветворных и лимфоидных клеток. Ретикулярные клетки способны восстанавливать исходное микроокружение при повреждении органов, содержащих Р. т., или переносить его при эктопической трансплантации. Во всех случаях сначала восстанавливается ретикулярная строма, а затем она репопулируется (заселяется) кроветворными или лимфоидными клетками (см. Лимфоидная ткань). В костном мозге ретикулярные клетки формируют также адвентициальный слой синусоидных капилляров и в условиях нормального кроветворения покрывают до 60% их поверхности. Длинные ветвящиеся отростки ретикулярных клеток вступают в специфическое взаимодействие с кроветворными клетками гранулоцитарно-го ряда дифференцировки (см. Кроветворные органы). Концентрация ретикулярных клеток повышена вблизи эндоста.

Экспериментальные данные свидетельствуют о сохранении в пост-натальном онтогенезе гистогенети-ческой близости между разными типами механоцитов (фибробластами, хрящевыми, костными, ретикулярными клетками). Так, при культивировании костного мозга in vitro возникают колонии-клоны фибробластов; нек-рые из этих колоний при обратной трансплантации в организм формируют костномозговой орган (участок костной ткани, окружающей костный мозг), заселяемый кроветворными клетками. Эти данные показывают, что среди ретикулярных клеток костного мозга имеются элементы, способные трансформироваться в истинные фибробласты (судя по их способности синтезировать коллаген I и III типов), и в то же время, проявляющие остеогенные свойства. В другой экспериментальной модели костномозговой орган возникает в результате последовательных морфогенетических процессов под влиянием индуктора — деминерализованного костного матрикса, имплантированного в подкожную соединительную ткань. По мнению Редди, Гея, Гея, Миллера (А. N. Beddi, В. Gay, S. Gay. E. J. Miller, 1977), в этом случае под влиянием индуктора происходит последовательная трансформация фибробластов в хрящевые, костные, а затем ретикулярные (стромальные) клетки. По-видимому, ретикулярные клетки костного мозга способны также трансформироваться в жировые клетки, участвующие в создании кроветворного микроокружения (в красном костном мозге). В норме ретикулярные клетки отличает высокая радиорезистентность, и они практически не делятся.

Существует мнение, что на поверхности дендритных ретикулярных клеток имеются мембранные рецепторы для иммуноглобулинов (см.), с к-рыми связываются иммунные комплексы антигенов с антителами. Согласно другому мнению, антигены (см.) просто медленно фильтруются через лабиринт, создаваемый отростками дендритных ретикулярных клеток. Связывание антигена происходит быстрее у предварительно иммунизированных животных (через 0,5—2 часа), чем у неиммунизированных (через 4—24 часа). Параллельно изменяется и ультраструктура дендритных ретикулярных клеток. В опытах на кроликах показано, что в процессе формирования светлых центров дендритные ретикулярные клетки трансформируются из фибробластических ретикулярных клеток прилежащей лимфоцитарной короны. При этом ретикулярные клетки теряют активность щелочной фосфатазы (и, по-видимому, способность к волокнообразованию).

С возрастом в Ретикулярной ткани увеличивается количество волокнистых структур. Для костного мозга характерно необратимое замещение ретикулярной стромы жировой тканью и прекращение кроветворения. С возрастными и патологическими изменениями Р. т. тесно связано нарушение функции кроветворных и лимфоидных органов. При воздействии высоких доз ионизирующего излучения на организм Р. т. не регенерирует, а замещается фиброзной. Миелофиброз характеризуется интенсивной пролиферацией фиброгенных клеток и последующим массивным отложением коллагена I, III и IV типов. Показано участие ретикулярных клеток в синтезе фибриллярных белков амилоида (см. Амилоидоз). Поражение собственно ретикулярной стромы, сопровождающееся нарушением кроветворения, не всегда можно выявить морфологически. Поэтому важная роль отводится методам клонирования стромальных клеток in vitro, изучению их взаимодействия с кроветворными и лимфоидными клетками в жидкостных и агаровых культурах.

Таблица. Сравнительная характеристика активности ферментов в ретикулярных клетках и мононуклеарных фагоцитах (макрофагах) белой пульпы селезенки человека По данным Мюллер-Хермелинка (H. К. Muller-Hermelink) и др. (1974)

Активность ферментов в различных клетках лимфатического фолликула селезенки

Ретикулярные клетки лимфоцитарной короны

Дендритные ретикулярные клетки светлых центров

ГИСТОЛОГИЯ, ЦИТОЛОГИЯ И ЭМБРИОЛОГИЯ

Строение, функции и развитие клеток, тканей и органов человека

Рыхлая волокнистая соединительная ткань

РЫХЛАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ — представитель волокнистых собственно соединительных тканей

Читайте также:  Что такое фетальный алкогольный синдром плода: причины и профилактика

Строение рыхлой волокнистой соединительной ткани (РВСТ): 1) клетки (см. ниже) и 2) межклеточное вещество: волокна (коллагеновые, эластические, ретикулярные) и основное (аморфное) вещество. В РВСТ в хорошо развитом межклеточном веществе преобладает основное вещество.

Лекция: СОЕДИНИТЕЛЬНЫЕ ТКАНИ. 1. СОБСТВЕННО СОЕДИНИТЕЛЬНЫЕ ТКАНИ: РВСТ

Локализация ткани: строма паренхиматозных органов, адвентициальные оболочки сосудов, собственная пластинка слизистых оболочек, подслизистая основа полых органов.

Функции: является посредником между кровью капилляров и другими тканями всех органов и систем человека.

Клетки РВСТ: 1) клетки дифферона фибробластов – это тканеобразующие клетки; 2) производные клеток крови: макрофаги, плазмоциты, тучные клетки; 3) лейкоциты, мигрирующие из крови; 4) производные нервного гребня.

1. Дифферон фибробластов включает стволовые и полустволовые клетки (в эмбриогенезе – клетки мезенхимы, у взрослого, считается, что адвентициальные клетки), а также клетки, вступившие в дифференцировку: малодифференцированные (юные) фибробласты, зрелые (дифференцированные) фибробласты и конечные формы жизни этих клеток фиброциты. Также в дифферон фибробласта входят адипоциты (жировые клетки), которые имеют с фибробластами единых предшественников.

Юные фибробласты проходят дифференцировку от клеток со слабо развитыми грЭПС и митохондриями до умеренно развитых. Зрелые фибробласты распластаны, отростчатые, размером 40-50 мкм и более. Они содержат хорошо развитую грЭПС, умеренно развитые митохондрии и комплекс Гольджи. В периферической зоне цитоплазмы фибробласты содержат небольшое количество миофибрилл, что позволяет им перемещаться в РВСТ.

Функции фибробластов: синтез и секреция белков и гликозаминогликанов, идущих на формирование компонентов межклеточного вещества соединительной ткани, а также выработка и секреция колониестимулирующих факторов (гранулоцитов, макрофагов).

Разновидности фибробластов в результате структурно-функциональных изменений:

1) миофибробласты образуются в результате гипертрофии сократительного аппарата фибробласта (актиновые и миозиновые фибриллы), что наблюдается в период беременности в матке, вокруг краёв раны при заживлении (контрактильная функция)

2) фиброкласты – это фибробласты, в которых наряду с аппаратом для синтеза фибриллярного белка появляется значительное число лизосом с ферментами коллагеназой, эластазой. Функция фиброкластов – перестройка сети коллагеновых и эластических волокон во время репаративной регенерации нарушенных структур.

Фиброциты – характерны для тех участков рыхлой волокнистой соединительной ткани, где нет образования или преобразования волокон. Эти клетки в значительной мере утрачивают способность к синтезу коллагена и эластина. Объем клеток меньше, чем у фибробластов, форма веретеновидная, слабо развиты органоиды цитоплазмы.

Адипоциты белые (белые жировые клетки) могут формировать крупные скопления в составе жировой ткани, а в РВСТ малочисленны. Подробное описание дано в разделе «Жировая ткань».

Адвентициальные клетки вытянутые веретеновидные клетки, часто локализуются вблизи кровеносных капилляров. Большинство из них имеют низкий уровень дифференцировки. Наиболее вероятно, что это предшественники малодифференцированных фибробластов, т.е. следующая фаза дифференцировки после стволовой клетки соединительной ткани (механоцитов).

2. Производные клеток крови и красного костного мозга в рыхлой волокнистой соединительной ткани.

Макрофаг (Мф) – образуется из моноцита, содержит большое количество лизосом с антимикробными факторами и гидролитическими ферментами (лизоцим, катионные белки, гидролазы и др.)

Основная фагоцитарная функция макрофагов обеспечивает: 1) участие клеток в иммунных реакциях: Мф расщепляет (процессирует) антиген, выступает как антиген-представляющая клетка; активирует Т-лимфоциты с помощью цитокина интерлейкина (ИЛ-1); Мф выделяет ростовые факторы, способные активировать фибробласты и ряд других типов клеток, что важно в процессе регенерации; 2) участие в воспалительных реакциях: Мф способны активировать воспаление через выработку простагландина Е2; 3) выработка интерферона, блокирующего вирусы.

Тучные клетки (тканевые базофилы, лаброциты) составляют 10% от клеток РВСТ, образуются в красном костном мозге и являются аналогами базофилов крови. Клетки имеют овальное ядро, цитоплазма заполнена базофильными гранулами диаметром от 0,3 до 1 мкм. Гранулы содержат гистамин, гепарин, серотонин, химазу, триптазу. Гранулы тучных клеток при окраске обладают свойством метахромазии – изменением цвета красителя. Из органелл хорошо развиты лизосомы с множеством гидролитических ферментов (протеазы, гидролазы и другие).

Эффекты веществ: 1) Гистамин увеличивает проницаемость капилляров, вызывает сокращения ГМК бронхов, повышает чувствительность к боли; 2) гепарин как антикоагулянт (связывает антитромбин III), уменьшает проницаемость межклеточного вещества РВСТ. Дегрануляция – это процесс выхода веществ из гранул путём экзоцитоза.

Клетки локализованы в РВСТ вокруг сосудов микроциркуляторного русла. Их много в коже, в слизистой оболочке дыхательных путей и в пищеварительной системе. Срок их жизни от нескольких недель до нескольких месяцев. Они способны перемещаться с помощью амебовидных движений.

Функции тучных клеток обусловлены эффектами биологически активных веществ: 1) Гомеостатическая функция, которая реализуется через воздействие на сосуды микроциркуляторного русла, проницаемость капилляров; 2) Защитная функция связана с синтезом гистамина, гепарина и дофамина как медиаторов воспаления, а также выделением хемотаксических факторов для нейтрофилов и эозинофилов; 3) Регуляторная функция связаны с влиянием на другие типы клеток (крови, эндотелия), с помощью синтезируемых тучной клеткой цитокинов. Это способствует активации клеток. Вырабатываемые тучными клетками простагландины вызывают сокращение ГМК внутренних органов; 4) Участие в аллергических реакциях связано с наличием рецепторов в цитолемме к иммуноглобулинам класса Е (антителам) и с биологическими эффектами гистамина (см. выше). Отделение множества антител от поверхности тучной клетки приводит к последующему выходу гистамина и реализации аллергической реакции в виде расширения капилляров (крапивница или же анафилактический шок, сопровождаемый низким артериальным давлением). Спазм ГМК бронхов может приводить к гипоксии.

Плазмоциты – это иммунологически активированные В-лимфоциты, имеют овальную или округлую форму, эксцентрично расположенное ядро, хорошо развитую гр.ЭПС, область комплекса Гольджи слабо окрашивается (светлый дворик). Клетка специализируется на выработке иммуноглобулинов (Ig) – специфических белков, которые являются антителами, инактивирующих антигены (чужеродные белки).

Функции: 1) защитная: участие в иммунных реакциях гуморального типа, являясь эффекторной клеткой, поскольку иммуноглобулины являются антителами, которые связываются со своим антигеном, обеспечивая специфический иммунитет.

3. Лейкоциты крови могут находиться в рыхлой волокнистой соединительной ткани при воспалении или при отсутствии его, поскольку здесь они заканчивают свой жизненный цикл.

4. Пигментные клетки – это вытянутые или отростчатые клетки с гранулами меланина (меланосом) в цитоплазме. Развиваются из нервного гребня.

Участие РВСТ в защитных реакциях организма. Клетки РВСТ наряду с лейкоцитами крови участвуют в иммунных реакциях, воспалении. Иммунные реакции сопровождают антиген – представляющие клетки (специализированные макрофаги). В описании тучных клеток (см: выше) указана их роль в регуляции иммунитета и участие в аллергических реакциях.

Воспаление – защитная реакция, направленная на борьбу с микроорганизмами, на отграничение воспалительного процесса.

1-ая фаза – фаза альтерации. Инициируют реакцию медиаторы воспаления из клеток крови. Гистамин выделяется через несколько минут после действия повреждающих факторов (токсины микробов, гидролитические ферменты разрушенных клеток и др.), микрососуды расширяются и нейтрофилы мигрируют из крови в РВСТ.

2-ая фаза – фаза экссудации. Под действием гистамина микрососуды расширяются и нейтрофилы мигрируют из крови в РВСТ. Нейтрофилы создают вокруг очага воспаления лейкоцитарный вал через 12 – 24 часа после начала воспаления и начинают фагоцитировать, используя гидролитические ферменты, катионные белки. На 2 сутки мигрируют в очаг воспаления макрофаги, которые занимаются не только фагоцитозом, но и синтезом веществ, активирующих фибробласты (фактор роста фибробластов – ФРФ), а также вырабатывают простагландин Е 2, стимулирующий деятельность клеток в очаге воспаления.

3-я фаза – фаза пролиферации (фаза репарации). Под действием активирующих факторов на третьи сутки очаг воспаления окружают мигрировавшие сюда фибробласты, одновременно здесь происходит их размножение. Главная задача фибробластов: создать «забор» из коллагеновых волокон вокруг очага воспаления. Этот процесс наиболее активно идет с 3 по 7 сутки после начала воспаления. В итоге очаг воспаления или инородное тело (вызвавшее воспаление) отграничиваются от остальных частей органа. Внутри очага воспаления формируется грануляционная ткань – молодая РВСТ с высоким содержанием клеточных элементов.

Межклеточное вещество РВСТ

1) Аморфное (основное) вещество – это гель, в образовании которого принимают участие кровеносные капилляры и клетки РВСТ. В состав геля входят гликозоаминогликаны, хондроитинсульфаты, липиды, протеогликаны, альбумины, глобулины крови, ферменты, минеральные вещества, вода. Поскольку аморфное вещество гидрофильно и имеет студенистую консистенцию, в нём могут перемещаться не только молекулы, но и клетки.

2) Волокна: коллагеновые и эластические располагаются рыхло и неупорядоченно.

Коллагеновые волокна образованы из белка коллагена. Различают 5 уровней организации: 1) полипептидная цепь, состоящая из повторяющихся последовательностей трёх аминокислот, две из них – пролин или лизин и глицин, а третья – любая другая молекула; 2) молекула коллагена: включает 3 полипептидные цепи; 3) микрофибрилла – несколько молекул коллагена, сшитые ковалентными связями; 4) фибрилла – их образуют несколько микрофибрилл; 5) волокно – образовано пучками фибрилл.
Коллагеновые волокна прочные, не растягиваются.
Функции: обеспечение механической прочности РВСТ.

Образование волокон происходит в два этапа: внутриклеточный и внеклеточный. На первом внутриклеточном этапе происходит образование полипептидных цепочек и формирование из них молекул проколлагена, которые выделяются экзоцитозом в межклеточное пространство. Второй внеклеточный этап фибриллогенеза включает образование молекул коллагена, протофибрилл, микрофибрилл и фибрилл.

Типы коллагенов. Молекулы коллагенов состоят из трех спирально скрученных полипептидных a — цепей, в которых преобладают аминокислоты глицин, пролин, лизин, гидрооксипролин, гидрооксилизин. Комбинации расположения молекул в a — цепях приводят к появлению нескольких типов коллагена. В организме человека преобладают следующие типы коллагена: I, II, III, V – фибриллярные коллагены, IV тип – аморфные. Существуют и другие типы коллагенов (таб. 8).

Таблица 8. Распределение основных типов коллагена в организме человека (по Быкову В.Л., 1999г.)

Тип коллагена
IРСТ, плотная соединительная ткань, роговица, волокнистый хрящ, коллагеновые волокна всех видов костной ткани и цемента.
IIГиалиновый, эластический хрящи и пульпозное ядро межпозвоночного диска.
IIIРетикулярные волокна кроветворных органов. В стенке артерий и вен и в клапанах сердца, кишечнике, печени, легком, в базальной мембране вокруг гладкомышечных клеток.
IVАморфные компоненты коллагена. Базальные мембраны эпителиев, мышечные ткани (кроме ГМК), капсула хрусталика.
VКоллагеновые фибриллы и волокна базальных мембран, в стенке кровеносных сосудов, в гладкой и исчерченной скелетной мускулатуре.

Нарушения фибриллогенеза лежат в основе системных заболеваний соединительной ткани – коллагенозов. Причина может быть связана с мутациями генов, кодирующих молекулы коллагена или эластина. Синтез коллагена может быть нарушен на фоне дефицита витамина С, который включен в биохимическую цепь синтеза. Внеклеточная сборка волокон может быть нарушена под влиянием токсинов микробов, иммунных реакций.

Эластические волокна снаружи имеются микрофибриллы, состоящие из микрофибриллярного белка, а внутри – белок эластин; эластические волокна хорошо растягиваются, после чего приобретают первоначальную форму.
Ретикулярные волокна – разновидность коллагеновых волокон, хорошо окрашиваются солями серебра, поэтому имеют другое название – аргирофильные волокна.

Что такое волокна ретикулярные и волокна соединительных тканей человека

Соединительная ткань

К соединительной ткани относят волокнистую, соединительные ткани со специальными свойствами и скелетную (хрящевая и костная). Соединительная ткань образована клетками и большим количеством межклеточного вещества, которое состоит из волокон и основного вещества.

К волокнистой соединительной ткани относят рыхлую, неоформленную плотную и оформленную плотную (сухожилия, фиброзные перепонки, пластинчатая и эластическая ткани). Соединительная ткань с особыми свойствами представлена ретикулярной, жировой, слизистой и пигментной.

Соединительная ткань выполняет трофическую функцию, связанную с питанием клеток и их участием в обмене веществ, защитную (фагоцитоз, выработка иммунных тел), механическую (образует строму органов, связывает их между собой, образует фасции и др.), пластическую (участвует в процессах регенерации, заживления ран) функции. При некоторых патологических состояниях соединительная ткань может участвовать в кроветворении, так как ее клетки могут давать начало элементам крови.

Рыхлая волокнистая соединительная ткань. Эта ткань состоит из клеток и межклеточного вещества, в котором волокна расположены рыхло и имеют разное направление (рис. 4). Она сопровождает кровеносные сосуды и нервы, входит в состав органов, образуя их строму. Межклеточное вещество содержит коллагеновые (клейдающие), эластические волокна и основное вещество.


Рис. 4. Рыхлая волокнистая соединительная ткань. 1 – коллагеновое волокно; 2 – эластические волокна; 3 – макрофагоциты; 4 – фибробласты; 5 – лимфоцит

Коллагеновые волокна представляют собой прямые или волнообразно изогнутые тяжи толщиной 1 – 12 мкм, состоящие из еще более тонких нитей – фибрилл. Они способны набухать и очень прочны. Эластические волокна представляют собой ветвящиеся нити разного диаметра. Их можно обнаружить при специальной окраске гистологических препаратов. В рыхлой волокнистой соединительной ткани они образуют широкопетлистую сеть. Помимо этих двух видов волокон, в рыхлой соединительной ткани встречаются также ретикулярные, или аргирофильные, волокна, получившие свое название благодаря тому, что они хорошо окрашиваются солями серебра и образуют сеть. Они входят в состав стромы лимфатических узлов, селезенки, костного мозга и т. д.

Основное вещество соединительной ткани представляет собой однородную массу и является коллоидом. В его состав входят мукополисахариды (гиалуроновая кислота, гепарин и др.), которые обусловливают морфологические и функциональные особенности основного вещества. Клеточные элементы соединительной ткани представлены малодифференцированными клетками, фибробластами, макрофагоцитами (макрофаги), тканевыми базофилами, плазмоцитами, липоцитами и пигментоцитами. Кроме того, в соединительной ткани встречаются клетки крови (лейкоциты).

Во взрослом организме все время происходит смена клеток. Отмирающие клетки заменяются новыми за счет размножения себе подобных. Кроме того, в соединительной ткани имеются клетки, способные превращаться в другие клеточные формы. Такие клетки называются малодифференцированными. К ним относятся клетки, расположенные по ходу кровеносных капилляров,- адвентициальные, или периваскулярные (перициты). Такими же являются ретикулярные клетки и лимфоциты. Они играют большую роль не только в процессах физиологического восстановления ткани, но и при разных патологических состояниях (воспаление, нарушение кроветворения и др.). Фибробласты – плоские, веретенообразные клетки, широко представлены в соединительной ткани. Они подвижны и способны делиться; могут возникать из малодифференцированных форм и превращаться в другие клетки. Фибробласты принимают участие в образовании основного вещества и коллагеновых волокон. При патологических состояниях они участвуют в заживлении ран и образовании рубцовой ткани и соединительнотканной капсулы вокруг инородных тел. Фибробласты, закончившие цикл развития, называются фиброцитами.

Макрофагоциты (макрофаги) – клетки, способные к фагоцитозу и перевариванию захваченных частиц, накоплению в цитоплазме коллоидных частиц. Различают свободные и оседлые макрофаги. Оседлые макрофаги (гистиоциты, блуждающие клетки в покое) встречаются в участках, богато снабженных кровеносными сосудами, а также в местах скопления жировых клеток. Они лежат поодиночке или небольшими группами, изолированно друг от друга и от других клеток и способны передвигаться. При различных раздражениях организма или при возникновении очага воспаления появляются свободные макрофаги – полибласты. Подвижные фагоцитирующие полибласты возникают из оседлых макрофагов, малодифференцированных клеток, лимфоцитов и моноцитов. Размеры и форма их различны. Макрофаги уничтожают микроорганизмы, в них нейтрализуются токсические вещества, вырабатываются иммунные тела.

Читайте также:  Что такое и как делается венография конечностей у детей: для чего нужно

Тканевые базофилы (тучные клетки) представляют собой неправильной формы клетки с отростками и характерной зернистостью цитоплазмы. Она шириной 3,5 – 14,0 мкм и длиной 22 мкм; вырабатывают гепарин, препятствующий свертыванию крови. Количество их увеличивается при некоторых заболеваниях.

Плазмоциты (плазматические клетки) встречаются в рыхлой соединительной ткани слизистой оболочки кишки, сальника, различных желез, в лимфатических узлах и костном мозге. При некоторых патологических состояниях их количество резко увеличивается. Они разной формы и величины и могут возникать из лимфоцитов, ретикулярных клеток, макрофагов и др. Плазматические клетки участвуют в образовании антител, а также в обмене белка.

Липоциты (жировые клетки) обладают способностью накапливать резервный жир. Они встречаются в рыхлой соединительной ткани поодиночке или группами около кровеносных сосудов. Когда липоциты скапливаются в большом количестве, вытесняя другие клетки, говорят о жировой ткани. Жировые клетки шаровидные, обычно каждая клетка содержит каплю нейтрального жира, занимающую всю центральную часть клетки. Количество жировых клеток в соединительной ткани сильно варьирует. Они чаще всего образуются из адвентициальных клеток, сопровождающих кровеносные капилляры.

Пигментоциты (пигментные клетки) – вытянутые клетки с короткими, непостоянной формы отростками. Их цитоплазма содержит зерна пигмента меланина. В рыхлой соединительной ткани они встречаются в коже вокруг заднего прохода, в коже мошонки и сосков молочных желез. Их очень много в сосудистой оболочке глаза.

Плотная волокнистая соединительная ткань. В зависимости от расположения волокон эта ткань подразделяется на неоформленную и оформленную. Резкой границы между рыхлой и плотной неоформленной соединительной тканью провести невозможно. В последней меньше основного вещества, коллагеновые волокна и сеть эластических волокон плотно прилежат друг к другу, переплетаются, напоминая войлок. Клеточных элементов в ней мало. В оформленной плотной волокнистой соединительной ткани пучки коллагеновых волокон расположены в определенном направлении, соответственно механическим условиям, в которых функционирует орган (рис. 5). Она образует сухожилия мышц, связки, перепонки и пластинчатую соединительную ткань, покрывающую некоторые органы (периневрий, пластинчатые тельца и др.). Некоторые связки (желтые связки позвоночного столба, голосовые связки и др.) и мембраны в стенках полых органов и сосудов образованы эластической тканью, содержащей большое количество эластических волокон.


Рис. 5. Оформленная плотная волокнистая соединительная ткань (продольный разрез сухожилия)

Соединительная ткань с особыми свойствами. Ретикулярная ткань состоит из ретикулярных клеток и ретикулярных волокон. Ретикулярные клетки имеют отростки, которыми они соединяются друг с другом, образуя сеточку (reticulum; отсюда название ткани). Ретикулярные волокна располагаются во всех направлениях. Ретикулярные волокна располагаются во всех направлениях. Ретикулярная ткань составляет остов костного мозга, лимфатических узлов и селезенки, а также встречается в слизистой оболочке кишечника, в почках и т. д. Ретикулярные клетки способны превращаться в клетки других видов (гемоцитобласты, макрофаги, фибробласты и др.).

Ретикулоэндотелиальной системой (система макрофагов) называют совокупность всех клеток организма, способных захватывать из жидкой среды частицы коллоида и взвесей и отклыдвать их в цитоплазме. Такие клетки служат для уничтожения вредных для организма агентов, поступающих извне или появляющихся местно, внутри организма. Они играют важную роль в образовании иммунитета. К таким клеткам относятся макрофаги, фагоцитирующие ретикулярные клетки кроветворных органов, звездчатые клетки синусоидных кровеносных капилляров печени и др. Впервые эти клетки в единую систему объединил И. И. Мечников.

Жировая ткань является местом накопления запасных питательных веществ, поэтому ее количество меняется в зависимости от питания организма. У человека жировая ткань образует подкожный слой, находится в сальнике, брыжейке кишки, около почек и т. п. Обычно она делится прослойками рыхлой соединительной ткани на дольки. Жировые клетки содержат капли жира и чаще всего сферической или многоугольной формы. Между ними проходят коллагеновые и эластические волокна и располагаются фибробласты, тучные клетки и лимфоциты. В жировой ткани протекают активные процессы обмена веществ, в частности образования жира из углеводов.

Слизистая, или студенистая, соединительная ткань встречается только у зародыша, в частности в пупочном канатике человека. Межклеточное вещество этой ткани однородно и напоминает желе.

Пигментной тканью называют ткань, в которой содержится много пигментных клеток – меланоцитов.

Хрящевая ткань. Эта ткань состоит из особых клеток – хондроцитов, окруженных большим количеством межклеточного вещества. В зависимости от строения межклеточного вещества различают гиалиновый, эластический и волокнистый хрящ.

Гиалиновый хрящ (рис. 6) состоит их хрящевых клеток, которые лежат в особых полостях в межклеточном веществе, обычно группами. Клетки разнообразной формы, чаще округлые или овальные. Межклеточное вещество прозрачное и состоит из коллагеновых волокон и основного вещества. Хрящ во взрослом организме образует хрящевую часть ребер, покрывает поверхности сочленяющихся костей и образует остов дыхательных путей. С возрастом наблюдаются уменьшение количества хрящевых клеток и изменение химического состава межклеточного вещества, в результате чего в нем откладываются соли кальция и происходит обызвествление хряща.


Рис. 6. Гиалиновый хрящ. 1 – надхрящница; 2 – хрящевая ткань

Эластический хрящ у человека образует ушную раковину, некоторые хрящи гортани и др., имеет желтоватый цвет и менее прозрачен, чем гиалиновый. В межклеточном веществе имеется большое количество эластических волокон. В нем никогда не происходит процесс обызвествления.

Волокнистый хрящ образует межпозвоночные диски, лобковый симфиз и выстилает суставные поверхности височно-нижнечелюстного, грудинно-ключичного и некоторых других суставов. Его межклеточное вещество содержит большое количество коллагеновых волокон.

Надхрящница покрывает хрящ по поверхности. Ее внутренний слой содержит особые клетки – хондробласты, из которых развиваются хрящевые клетки – хондроциты, в результате чего происходит рост хряща.

Костная ткань. Образуется из клеток остеоцитов и межклеточного вещества, состоящего из волокон и основного вещества, содержащего неорганические соли (рис. 7), что делает ее крепкой.


Рис. 7. Остеон (поперечный разрез декапьцинированной кости). 1 – центральный канал; 2 – пластинка остеона; 3 – костная клетка (остеоцит); 4 – отростки костных клеток

В костной ткани постоянно происходит разрушение и созидание кости. Физиологические свойства костной ткани могут меняться с возрастом, в зависимости от питания, мышечной деятельности, при нарушении деятельности эндокринных желез и иннервации. Коллагеновые волокна костной ткани получили название оссеиновых (os – кость); они выявляются на гистологических препаратах при специальной обработке. Неорганические вещества представлены главным образом солями кальция, образующими сложные соединения, придающие кости прочность. Органическое вещество кости – оссеин – делает кость гибкой и эластичной. Сочетание этих свойств создает ту прочность и легкость, которая необходима для опорной ткани. В межклеточном веществе костной ткани располагаются плоские, овальной формы полости, получившие название костных полостей. Они соединяются костными канальцами. В костной ткани встречается три вида клеток: остеобласты, остеоциты и остеокласты.

Остеобласты – клетки, образующие костную ткань. Встречаются в местах разрушения и восстановления костной ткани. В развивающейся кости их очень много.

Остеоциты образуются из остеобластов и имеют отростки. Тела остеоцитов лежат в костных полостях, а отростки заходят в костные канальцы. Система костных канальцев создает условия для обмена веществ между остеоцитами и тканевой жидкостью.

Остеокласты – это большие многоядерные клетки с отростками. Они принимают участие в разрушении кости и обызвествленного хряща с образованием бухты или лакуны.

Различают два вида костной ткани – грубоволокнистую и пластинчатую. К ней относят также и дентин зубов.

В грубоволокнистой костной ткани коллагеновые волокна образуют хорошо заметные пучки, между которыми в костных полостях лежат остеоциты. У человека эта ткань встречается лишь в процессе развития костей у зародыша, а у взрослых – в швах черепа и у мест прикрепления к костям сухожилий.

Пластинчатая, или тонковолокнистая, костная ткань содержит коллагеновые волокна, расположенные параллельными пучками внутри пластинок или между ними. Пластинчатая костная ткань образует все кости скелета человека.

Дентин не имеет костных клеток. Тела клеток лежат вне дентина, а их отростки проходят в канальцах внутри него. Эти клетки напоминают остеобласты и называются одонтобластами.

Кость. Пластинчатая костная ткань образует компактное и губчатое костное вещество, что составляет кость. В компактном костном веществе костные пластинки располагаются в определенном порядке и придают веществу большую плотность (рис. 8). В губчатом веществе пластинки внутри кости образуют перекладины разной формы, располагающиеся в зависимости от функции кости.


Рис. 8. Строение кости. 1, 5 – центральные каналы остеона; 2 – пластинки остеона; 3 – вставочные пластинки; 4 – общие пластинки

Из компактного вещества состоит главным образом средняя часть длинных трубчатых костей (тело, или диафиз), а губчатое вещество образует их концы, или эпифизы, а также короткие кости; в плоских костях имеется то и другое вещество.

В компактном костном веществе костные пластинки образуют своеобразные трубчатые системы – остеоны. Остеон является структурной единицей кости. Костные пластинки концентрически расположены вокруг кровеносных сосудов; обычно их 5 – 20 толщиной 3 – 7 мкм. Такая конструкция придает кости особую прочность. Полость в центре остеона, в которой проходит сосуд, называется центральным каналом остеона (гаверсов канал). Каналы соединяются друг с другом, а сосуды – между собой, с сосудами костного мозга, расположенного внутри кости, и с сосудами надкостницы. Между остеонами костные пластинки идут в разных направлениях и носят название вставочных, или промежуточных. Снаружи и изнутри кости пластинки располагаются концентрически. Каналы, по которым проходят сосуды из надкостницы в кость, называются питательными. Надкостницу с костью соединяют коллагеновые волокна, которые называются прободающими, или шарпеевскими, волокнами.

Снаружи кость покрыта надкостницей (периост). Она состоит из двух слоев соединительной ткани. Внутренний слой содержит много коллагеновых и эластических волокон, а также остеокласты и остеобласты. В период роста и остеобласты надкостницы принимают участие в костеобразовании. Наружный слой построен из более плотной соединительной ткани, к нему прикрепляются связки и сухожилия мышц. Надкостница содержит большое количество сосудов и нервов.

Эндостом называется оболочка, покрывающая кость со стороны костномозгового канала.

При повреждениях и переломах кости происходит ее восстановление (регенерация) за счет надкостницы, которая, разрастаясь над местом перелома, соединяет концы сломанной кости, образуя вокруг них муфту из костной ткани, получившую название костной мозоли.

Ткани: анатомия, особенности строения и выполняемые функции

В организме человека присутствует более двух сотен различных видов клеток, каждая из которых уникальна. Разделить их на группы, именуемые тканями, позволяет схожее строение и происхождение, а также выполняемые функции. Ткани — это следующая после клеток иерархическая ступень анатомии человека. Они представляют собой симбиоз клеток и межклеточного пространства, структура которых позволяет выполнять возложенные на них функции, поддерживая тем самым нормальную жизнедеятельность организма.

У человека выделяют 4 вида тканей: эпителиальную, соединительную, мышечную и нервную. Каждая из них образуется в результате дифференцировки клеток в процессе формирования организма. В чём заключаются особенности анатомии тканей, как они взаимодействуют и какие функции выполняют? Анатомическая справка поможет разобраться в этих вопросах!

Анатомия ткани человека: от однородных клеток к высокодифференцированному организму

Образование тканей, поддержание их формы и выполнение общих функций — сложный процесс, запрограммированный в организме молекулами ДНК. Именно благодаря генетической информации клетки способны к дифференцировке — биохимическому процессу, в результате которого изначально однородные единицы приобретают специфические особенности, позволяющие им впоследствии выполнять определённые функции. Благодаря этому процессу в организме появляются 4 вида тканей со схожей анатомией и физиологией.

Примечательно, что после дифференцировки клетки тканей сохраняют присущие им особенности даже в новой среде. Чтобы это доказать, в 1952 году специалисты Чикагского университета провели наглядное исследование, разделив клетки куриного эмбриона и культивировав их в специальных ферментах. В результате этого опыта образовались новые колонии, но при этом реакции и «поведение» клеток в новой структурной среде были типичными для конкретного вида ткани, из которой они изначально произошли.

Чтобы понять, как взаимодействуют клетки в человеческом организме, рассмотрим анатомию тканей более подробно.

Эпителий

Эпителиальная ткань образует наружные покровы организма — кожу и слизистые оболочки, выстилает внутренние полости органов и участвует в формировании желёз. Эпителиальные клетки плотно прилегают друг к другу, сплетаясь в единую прочную структуру. Между ними практически не присутствует межклеточное вещество. Такое строение позволяет эпителию справляться с возложенными на него функциями, среди которых:

  • защита внутренней среды организма от разрушительных факторов, действующих извне;
  • разграничение органов и их полостей, поддержание их формы и структуры;
  • выработка специальных жидкостей организма: слюны, некоторых ферментов и гормонов;
  • участие в обменных процессах, в том числе всасывание определённых молекул из окружающей среды и выделение продуктов распада.

Благодаря особой структуре эпителиальные ткани способны к быстрой регенерации. Даже при серьёзном повреждении они постепенно восстанавливаются, образуя колонии новых клеток в травмированных местах.

Особенности анатомии эпителиальной ткани позволяют разделить её на два подвида:

  1. Железистый эпителий образует железы внешней и внутренней секреции. Ткани этого типа присутствуют в щитовидной, слёзных, слюнных железах. Благодаря им осуществляется секреция определённых гормонов и ферментов, поддерживающих баланс внутри организма.
  2. Поверхностный эпителий — это наружные покровы организма, а также выстилка полостей внутренних органов. В зависимости от анатомических особенностей, он может быть однослойным и многослойным, ороговевающим и неороговевающим. Эпителий, способный к ороговению, присутствует только на поверхности кожи и называется эпидермальным слоем. Неороговевающий, в свою очередь, выступает слизистым барьером.

Кроме того, эпителий классифицируется по типу клеток, присутствующих в его составе. Исходя из этого критерия, выделяют кубический, плоский, ресничный, цилиндрический и другие подтипы.

Соединительная ткань

Название этого типа тканей отражает её суть и функциональные особенности. Соединительная ткань включает разнообразные клеточные структуры и большое количество межклеточного вещества, состоящего из аморфной массы, коллагеновых, белковых и эластиновых волокон. Такое строение позволяет ей заполнять все имеющиеся промежутки между функциональными единицами организма — органами и другими тканями. Также она может выполнять питательную, защитную, опорную, пластическую, транспортную и другие функции в зависимости от расположения.

Читайте также:  Что подарить мальчику на 3 года на день рождения - идеи подарков, в том числе сделанных своими руками

Соединительной тканью представлено более 50 % от общей массы человека. В зависимости от анатомического расположения её классифицируют на следующие виды:

  • собственно соединительные ткани: плотная и рыхлая, ретикулярная и жировая;
  • скелетные образования;
  • трофические жидкости внутренней среды.

Плотная волокнистая ткань содержит высокий процент коллагена и эластина, благодаря чему способна сохранять текущую форму. Из неё образуются сухожилия, связки, фасции мышечных волокон и надкостница (поверхностный слой костей). Рыхлая ткань, напротив, включает высокий процент аморфного вещества, поэтому способна заполнять собой любое необходимое пространство. Совместно с плотной тканью она формирует дерму кожи и оболочку кровеносных сосудов.

Ретикулярная ткань похожа на своеобразную сеть из отростчатых клеток и волокон. Она занимает ключевое место в процессах кроветворения и совместно с плотной и рыхлой соединительной тканью образует печень, красный костный мозг, селезёнку и лимфатические узлы.

Жировая ткань также относится к соединительной. Адипоциты — жировые клетки — выстилают внутренние органы, обеспечивая дополнительную амортизацию между ними. Кроме того, жировая ткань присутствует в подкожной клетчатке и выполняет депонирующую функцию, сохраняя жиры для последующего расщепления в условиях дефицита энергетических ресурсов.

Скелетные образования, представленные соединительной тканью, образуют костные и хрящевые структуры. Костная ткань более плотная, поскольку её межклеточное вещество содержит до 70 % минеральных солей. Благодаря этому кости скелета отличаются высокой прочностью и устойчивостью. Хрящевая ткань более гибкая, поскольку в её составе превалируют эластиновые и коллагеновые волокна. Из неё образуются суставные поверхности, кольца, поддерживающие форму дыхательных путей, ушная раковина и другие хрящи человеческого организма.

Мышечная ткань

К группе мышц относятся волокна, способные реагировать на возбуждение, сокращаться и расслабляться в зависимости от обстоятельств. Каждая отдельная группа мышц имеет определённую, чаще вытянутую, форму и отделена от других специальной сумкой — фасцией. Благодаря их ритмичному последовательному сокращению тело человека способно принимать любую допустимую позу и передвигаться в пространстве. Кроме того, мышечная ткань обеспечивает сокращение стенок некоторых внутренних органов, включая сердце, тем самым поддерживая выполнение многих жизненно важных функций.

Как и другие виды тканей, мышечная имеет свою классификацию:

  • Гладкие мышцы — миоциты — сокращаются непроизвольно и ритмично. Они составляют основу полых внутренних органов и сосудов — артерий, пищевода, мочевого пузыря и т. д.
  • Поперечнополосатая мускулатура образует скелетные и мимические мышцы, диафрагму, гортань, язык и мышцы рта. Отдельной её разновидностью служит сердечная мышечная ткань: хотя она и относится к поперечнополосатой, каждая отдельная клетка миокарда имеет 1–2 ядра в отличие от типичных многоядерных клеток других мышц этой подгруппы.

Нервная ткань

Нервные волокна являются связующим звеном между различными частями организма и окружающей средой, благодаря чему вся анатомическая система работает слаженно и синхронно. Они способны реагировать на возбуждение и проводить нервные импульсы за считанные доли секунд, обеспечивая молниеносную реакцию человека на изменения, происходящие внутри него или действующие извне.

Отдельные клетки нервной системы (нейроны) сплетаются в единую сеть, распространяющуюся на весь организм, посредством отростков двух типов — дендритов и аксонов. Дендриты принимают нервный импульс и передают его к телу нейрона, а аксоны, наоборот, испускают его другим клеткам. Этот процесс происходит мгновенно, благодаря чему возникший импульс быстро достигает конечной цели.

В зависимости от влияния, которое оказывают нейроны на конечную цель, они делятся на несколько видов:

  • возбуждающие клетки выделяют медиатор, провоцирующий возбуждение;
  • тормозящие нейроны синтезируют медиатор торможения;
  • нейросекреторные способны выделять в кровяное русло гормоны.

Небольшие щелевидные промежутки между нейронами заполняет нейроглия — межклеточное вещество нервной ткани. Она выполняет питательную, защитную и изоляционную функцию по отношению к структурным единицам ткани.

Так ли важна анатомия ткани?

Несмотря на кажущееся однообразие, ткани человеческого организма имеют свои особенности, формирующиеся ещё в процессе эмбриогенеза. От того, насколько полноценно каждая из них будет выполнять возложенные функции, зависит результат их сбалансированного взаимодействия — полноценная жизнедеятельность организма. Более подробное изучение анатомии тканей позволяет понять, как органы и системы взаимодействуют друг с другом, на чём базируется их работоспособность и как добиться самого важного момента — поддержания их здоровья и функциональности.

Соединительная ткань: классификация и особенности

Соединительная ткань встречается в организме повсеместно. У этой ткани больше всего разновидностей. Это и жир и кости с хрящами и сухожилия. Кровь тоже является соединительной тканью нашего тела. Главной особенностью любой соединительной ткани является наличие межклеточного вещества вырабатываемого самими клетками. Это вещество состоит из 2 компонентов: аморфного и волокнистого.

Что касается аморфного компонента, то он представлен гликозаминогликанами (представляют собой полисахариды) и протеогликанами (состоят из гликозаминогликанов с добавлением белка 5-10%). От количества аморфного компонента зависит консистенция ткани. Например, в плазме крови его почти нет, т.к. кровь жидкая. В составе хрящевой ткани аморфный компонент присутствует в больших количествах, чем обеспечивает ей необходимые свойства.

Волокнистый компонент межклеточного вещества представлен волокнами 2 типов: колагеновыми и эластичными. Коллагеновые волокна состоят из белка коллагена, имеют диаметр 10 мкм, длинные и извитые. Придают ткани прочность. Коллагеновые волокна имеют тенденцию к набуханию. Эластичные волокна состоят из белка эластина, менее извитые и имеют диаметр 1 мкм. Основная функция эластичных волокон – придание эластичности (могут удлиняться в 2-3 раза) ткани и возвращение её в исходное положение после растяжения. Ретикулярные волокна представляют собой незрелые коллагеновые. Поскольку их можно окрасить солями серебра, их еще называют аргирофильными.

Локализация и функции соединительной ткани

По локализации в организме соединительная ткань часто занимает промежуточное положение между другими тканями, связывая различные виды тканей в единое целое. Например, слой соединительный ткани под названием дерма питает поверхностный слой кожи эпидермис, через базальную мембрану. Исходя из вышесказанного, перечислим основные функции соединительной ткани в организме:

  • механическая, опорная и формообразующая функции. Эта ткань составляет опорную систему организма: кости, хрящи, фасции, сухожилия, связки. Входит в состав капсулы и стромы большинства органов, связывает различные виды тканей между собой;
  • защитная и иммунная функции. Фасции защищают мышечную ткань, кости скелета защищают от повреждения многие жизненно важные органы, включая сердце и мозг. Многие подвиды соединительной ткани способны к фагоцитозу и выработки иммунных тел;
  • трофическая функция и депонирующая функция. Играя роль посредника между различными тканями, соединительная ткань может осуществлять их питание. Пример с дермой и эпидермисом был рассмотрен выше. Что касается депонирующей функции, хорошим примером послужит жировая ткань являющаяся главным депо жира в организме;
  • обменная функция. Соединительная ткань способствует обмену веществ и поддержанию постоянства внутренней среды организма;
  • пластическая функция. Соединительная ткань участвует в компенсаторно-приспособительных реакциях, регенерации тканей при их повреждении. Компенсаторно-приспособительными реакциями называют процессы сохранения организмом постоянства внутренней среды, при изменении внешней среды окружающей организм или при наличии внутреннего патологического процесса в самом организме.

Классификация соединительной ткани

Будем придерживаться следующей классификации. Соединительная ткань подразделяется на собственно соединительную и скелетную. Скелетная представлена костной и хрящевой тканью. Собственно соединительная подразделяется на волокнистую и ткани со специальными свойствами. Теперь рассмотрим эти ткани подробнее.

Волокнистая соединительная ткань

Выделяют рыхлую, плотную оформленную и плотную неоформленную волокнистую ткань.

Рыхлая соединительная ткань присутствует в стенках всех кровеносных и лимфатических сосудов, образует строму многих внутренних органов. Аморфный компонент межклеточного вещества (коллоид) рыхлой ткани способен задерживать жидкость, тем самым формируя отек. Количество коллагеновых и эластичных волокон в рыхлой соединительной ткани очень мало, а те, что есть направлены в разные стороны. Рассмотрим виды клеток типичных для этого подвида ткани и их функции:

  • фибробласты – наиболее многочисленная группа клеток, основная функция которых синтез всех компонентов межклеточного вещества. Под влиянием сложных химических процессов в них образуется белки коллаген и эластин – главный материал для строительства соответствующих волокон. Второе название – «клетки-ткачи». Зрелые фибробласты, закончившие цикл развитие называют фиброцитами;
  • макрофаги (гистиоциты) – клетки способные к фагоцитозу, т.е. к захвату и переварению инородных частиц, бактерий, внеклеточных структур. Секретируют во внеклеточное вещество лизоцим (против бактерий), пирогенны (повышение температуры тела), интерферон (против вирусов);
  • тканевые базофилы (тучные клетки — лаброциты) – клетки, задача которых секреция гистамина и гепарина. Гепарин препятствует свертываемости крови, а гистамин выделяется в процессе воспаления. В частности гистамин способствует проявлению аллергических реакций;
  • малодифференцированные клетки – своего рода «скамейка запасных». Могут превращаться в другие виды клеток при необходимости. Сюда можно отнести лимфоциты, перициты (клетки Ш. Руже);
  • плазмоциты (плазматические клетки) отвечают за гуморальный (неклеточный) иммунитет. Синтезируют гамма-глобулины при обнаружении в организме антигена.

Оба подвида плотной соединительной ткани имеют большое количество тесно расположенных волокон. Клеточных элементов и аморфного компонента в них мало. Плотная неоформленная волокнистая ткань образует соединительнотканную основу кожи (сетчатый слой). Ее коллагеновые и эластичные волокна переплетаются, но идут в разных направлениях. Плотная оформленная волокнистая ткань имеет строго упорядоченные по направлению волокна в зависимости от особенностей органа. Этот подвид ткани формирует сухожилия мышц, связки, перепонки, фасции.

Соединительная ткань со специальными свойствами

Эти ткани представляют собой скопление однородных клеток, выполняющих некую конкретную функцию. Рассмотрим 4 подвида этих тканей:

  • жировая ткань – представлена клетками липоцитами и является депо жира. Подразделяется на белую и бурую. Бурая жировая ткань характерна только для новорожденных детей. Жировая ткань локализуется в подкожно-жировом слое, около почек, в брызжейке, в сальнике. Прослойки рыхлой соединительной ткани делят жировую на дольки. Жир участвует в процессах терморегуляции, является запасом связанной воды;

  • ретикулярная ткань состоит из клеток соединенных друг с другом длинными ретикулярными отростками (так называемая ретикулярная сеть). В межклеточном веществе много ретикулярных волокон, занимающих по растяжимости среднее положение между эластичными и коллагеновыми. Составляет основу костного мозга, лимфоузлов, входит в состав селезенки, почек, слизистой оболочки кишечника. Основная функция ретикулярной ткани – формирование новых клеток крови;

  • слизистая или студенистая соединительная ткань встречается только на стадии зародыша в пупочном канатике. Желеобразная структура позволяет защищать пупочные сосуды от сдавливания и механических травм. Эту ткань еще называют Вартоновым студнем;
  • пигментная соединительная ткань состоит из клеток меланоцитов содержащих пигмент меланин. Скопления этой ткани находятся в области мошонки, вокруг сосков, анального кольца, радужке глаза, а также в родимых пятнах.

Хрящевая соединительная ткань

Хрящевая ткань является разновидностью скелетной ткани и имеет свои морфологические особенности. Аморфное вещество здесь очень плотное из-за концентрации вышеупомянутых гликоминагликанов и протеогликанов. Сверху хрящ по всей поверхности покрыт слоем под названием надхрящница, за счет которой осуществляется рост хряща. Аморфный и волокнистый компоненты синтезируются в молодых клетках – хондробластах, расположенных во внутреннем слое надхрящницы. Сам хрящ кровеносных сосудов не имеет, его питание происходит из капилляров надхрящницы. Хондробласты с возрастом покрываются специальной капсулой и переходят в состав хряща. Теперь они стали хондроцитами. Межклеточное вещество хрящевой ткани настолько плотное, что когда хондроциты делятся, дочерние не могут отойти от материнской. Поэтому хондроциты располагаются группами в небольшой полости. Существует три разновидности хряща:

  • гиалиновый хрящ образует хрящи ребер, эпифизарные хрящи, суставные хрящи, характерен для стенок воздухоносных путей. По внешнему виду является прозрачным, голубовато-белого цвета. Этот хрящ еще называют стекловидным. В старости часто обызвествливается. Межклеточное вещество представлено аморфным компонентом, с небольшой примесью коллагеновых волокон;

  • эластичный хрящ формирует ушные раковины, часть слуховой трубы и наружного слухового прохода, надгортанник, хрящи гортани, т.е. анатомические образования, где хрящевая основа подвержена изгибам. Межклеточное вещество богато эластичными волокнами, впрочем, коллагеновые волокна тоже присутствуют. Эластичный хрящ имеет желтоватую окраску, менее прозрачен чем гиалиновый и в отличие от него, почти никогда не обызвествливается в старости;

  • волокнистый хрящ образует межпозвоночные диски, входит в состав внутрисуставных дисков и менисков, а также височно-нижнечелюстного и грудино-ключичного суставов. Межклеточное вещество богато коллагеновыми волокнами. У пожилых людей обызвествливается.

Костная ткань и ее виды

Основными клетками любой кости являются остеоциты находящееся в обызвествленном межклеточном веществе, которое практически не содержит аморфного компонента. Между остеоцитами находятся осеиновые (коллагеновые) волокна и неорганические соли. Эта ткань формирует наш скелет и одновременно является депо минеральных веществ, например кальция и фосфора. Существует 3 типа клеток костной ткани:

  • остеобласты – молодые клетки синтезирующие межклеточное вещество. Расположены в богатом сосудами поверхностном слое кости – надкостнице. В процессе развития остеобласты превращаются в остеоциты;
  • остеоциты представляют собой основное вещество кости;
  • остеокласты – клетки разрушители. Костное вещество постоянно обновляется, поэтому стареющая кость разрушается остеокластами, а освободившееся место занимают молодые остеоциты. Также остеокласты играют важную роль при формировании костей в эмбриональном периоде, разрушая хрящи которые заменяются костной тканью.

Существует несколько разновидностей костной ткани. Грубоволокнистая костная ткань отличается беспорядочным и разнонаправленным расположением оссеиновых волокон. Встречается у зародышей и молодых организмов. У взрослых людей ее можно встретить только в швах черепа и местах где сухожилия крепятся к костям. В остальных частях тела, по мере развития организма грубоволокнистая ткань замещается пластинчатой.

Пластинчатая костная ткань представляет собой множество костных пластинок, внутри и между которыми находятся параллельные пучки оссеиновых волокон. Эта ткань бывает 2 видов:

  • компактная костная ткань образует среднюю часть трубчатых костей, так называемый диафиз. Состоит из строго упорядоченных костных пластинок и имеет большую твердость;
  • губчатой костной ткани, костные пластинки образует перекладины (трабекулы). Данная ткань формирует концы длинных трубчатых костей, которые называются эпифизы, а также образует короткие кости. Что касается плоских костей человеческого организма, то в них может присутствовать как компактная, так и губчатая ткань.

Ссылка на основную публикацию