Десмосома и клетка – что такое межклеточные контакты и взаимодействия с помощью десмосома

Десмосома и клетка – что такое межклеточные контакты и взаимодействия с помощью десмосома

Для улучшения этой статьи желательно ? :

  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

п • Межклеточные контактыЯкорные контакты

Ассоциированные с актиновым цитосклетеомАдгезионные контакты (клетка-клетка) · Фокальные контакты (клетка-внеклеточный матрикс)
Ассоциированные с промежуточными филаментамиДесмосомы (клетка-клетка) · Гемидесмосомы (клетка-внеклеточный матрикс)
Запирающие контактыКонтакты, формирующие каналы

Wikimedia Foundation . 2010 .

Смотреть что такое “Десмосомы” в других словарях:

ДЕСМОСОМЫ — (от греч. desmos связь связка и soma тело), структуры на поверхности животных клеток, соединяющие их между собой. Каждая десмосома состоит из 2 половинок (принадлежат соседним клеткам), разделенных щелью … Большой Энциклопедический словарь

ДЕСМОСОМЫ — (от греч. desmus связь и сома), специализир. контактные участки между животными клетками. Наиб, распространены в эпителиальных тканях. Плазматич. мембраны двух контактирующих клеток в Д. идут параллельно друг другу и разделены пространством шир.… … Биологический энциклопедический словарь

десмосомы — (от греч. desmós связь, связка и sōma тело), структуры на поверхности животных клеток, соединяющие их между собой. Каждая десмосома состоит из 2 «половинок» (принадлежат соседним клеткам), разделённых щелью. * * * ДЕСМОСОМЫ ДЕСМОСОМЫ (от греч.… … Энциклопедический словарь

десмосомы — (гр. desmos связка, связь + сома) поверхностные структуры, способствующие соединению между собой клеток у животных. Новый словарь иностранных слов. by EdwART, , 2009. десмосомы (дэ), ом, ед. десмосома, ы, ж. ( … Словарь иностранных слов русского языка

Десмосомы — (от греч. desmós связь, связка и soma тело) структуры поверхности животных клеток, способствующие их соединению между собой. Ранее считали Д. межклеточными мостиками. Однако электронномикроскопические исследования показали, что каждая Д.… … Большая советская энциклопедия

ДЕСМОСОМЫ — (от греч. desmos связь, связка и тело), структуры на поверхности животных клеток, соединяющие их между собой. Каждая Д. состоит из 2 половинок (принадлежат соседним клеткам), разделённых щелью … Естествознание. Энциклопедический словарь

Межклеточные контакты — соединения между клетками, образованные при помощи белков. Межклеточные контакты обеспечивают непосредственную связь между клетками. Кроме того, клетки взаимодействуют друг с другом на расстоянии с помощью сигналов (главным образом сигнальных… … Википедия

Межклеточные соединения — – соединения между клетками, образованные при помощи белков. Остальные виды взаимодействий клеток проходят посредством соединительной ткани. Межклеточные связи сводятся не только к электрическим взаимодействиям. Взаимосвязь между клетками… … Википедия

Биологические мембраны — тонкие пограничные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частиц, а также канальцев и пузырьков, пронизывающих протоплазму. Толщина Б. м. не превышает 100 Å. Важнейшая функция Б. м.… … Большая советская энциклопедия

Клетка — У этого термина существуют и другие значения, см. Клетка (значения). Клетки крови человека (РЭМ) … Википедия

Межклеточные контакты.

Плазматическая мембрана, как уже говорилось, принимает активное участие в межклеточных контактах, связанных с конъ­югацией одноклеточных организмов. У многоклеточных организ­мов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществлять­ся разными путями. В зародышевых, эмбриональных тканях, осо­бенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, контактирования) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей еще недо­статочно изучен, но вероятнее всего, что он обеспечивается взаимо­действием между липопротеидами и гликокаликсом плазматиче­ских мембран. При таком межклеточном взаимодействии эмбрио­нальных клеток между плазматическими мембранами всегда ос­тается щель шириной около 20 нм, заполненная гликокаликсом. Обработка ткани ферментами, нарушающими целостность гликокаликса (муказы, действующие гидролитически на муцины, мукополисахариды) или повреждающими плазматическую мембрану (протеазы), приводит к обособлению клеток друг от друга, к их диссоциации. Однако если удалить фактор диссоциации, то клет­ки могут снова собираться, реагрегировать. Так можно диссоцииро­вать клетки разных по окраске губок, оранжевых и желтых. Ока­залось, что в смеси этих клеток образуются два типа агрегатов: состоящие только из желтых и только из оранжевых клеток. При этом смешанные клеточные суспензии самоорганизуются, восста­навливая исходную многоклеточную структуру. Сходные результа­ты были получены с суспензиями разделенных клеток эмбрионов амфибий; в этом случае происходит избирательное пространствен­ное обособление клеток эктодермы от энтодермы и от мезенхимы. Более того, если для реагрегации используются ткани поздних стадий развития зародышей, то в пробирке самостоятельно со­бираются различные клеточные ансамбли, обладающие тканевой и органной специфичностью, образуются эпителиальные агрегаты, сходные с почечными канальцами и т. д.

Соединения между клетками в составе тканей и органов мно­гоклеточных животных организмов могут образовываться слож­ными специальными структурами, которые называют собственно, межклеточными контактами. Эти структурированные межклеточные контакты особенно выражены в покровных пограничных тканях, в эпителиях. Возможно, что первичное обособление пласта клеток, связанных друг с другом с помощью специальных структурированных межклеточных контактов, в филогенезе животных обеспечило образование и развитие тканей и органов.

Благодаря электронной микроскопии накопилось множество данных об ультраструктуре этих соединительных образований. К сожалению, их биохимический состав и молекулярная структура еще недостаточно точно изучены.

Изучая соединения клеток в эпителиальных пластах, можно
обнаружить следующие структуры, связывающие клетки друг с
другом: простой контакт, соединение типа «замка», плотный контакт ‘промежуточный контакт или зона слипания, десмосомный
контакт, щелевидный контакт.

Такое разнообразие контактов может встречаться при объединении однородных клеток. Например, в печени встречаются все
основные типы контактов.

Схема строения межклеточных контактов.

1- простой контакт, 2- «замок», 3- плотный

замыкающий контакт, 4 –промежуточный

контакт, 5- десмосома, 6 – щелевидный

Схема строения межклеточных контактов

гепатоцитов крысы: nc- простой контакт,

з – «замок», д – десмосома,

ск – соединительный комплекс,

зс – зона слипания, плотный контакт;

жк – желчный капилляр, щк – щелевидный контакт.

Простой контакт, встречающийся среди большинства прилежащих друг к другу клеток различного происхождения. Большая часть поверхности контактирующих клеток эпителия так же свя­зана с помощью простого контакта. где плазматические мембраны соприкасающихся клеток разделены пространством 15 — 20 нм. Как уже говорилось, это пространство представляет собой надмембранные компоненты клеточных поверхностей. Ширина щели между мембранами клеток может быть и больше 20 нм, образуя расширения, полости, но не меньше 10 нм. Со стороны цитоплаз­мы к этой зоне плазматической мембраны не примыкают никакие специальные дополнительные структуры.

Соединение типа «замка» представляет собой выпячивание плазматической мембраны одной клетки в инвагинат (впячивание) другой. На срезе такой тип соединения напоминает плотничий шов. Межмембранное пространство и цитоплазма в зоне «замков» имеют те же характеристики, что и в областях простого контак­та.

Плотный замыкающий контакт — это зона, где внешние слои двух плазматических мембран максимально сближены. Часто вид­на трехслойность мембраны в этом контакте: два внешних осмиофильных слоя обеих мембран сливаются в общий слой толщиной

2 — 3 нм. Слияние мембран происходит не по всей площади плот­ного контакта, а представляет собой ряд точечных слияний мембран; Со стороны цитоплазмы, в этой зоне часто встречаются мно­гочисленные фибриллы около 8 нм в диаметре, располагающиеся параллельно поверхности плазмалеммы. Такого типа контакты бы­ли обнаружены между фибробластами в культуре ткани, между эмбриональным эпителием и клетками мезенхимы. Очень харак­терна эта структура для эпителиев, особенно железистых и кишеч­ных. В последнем случае плотный контакт образует сплошную зо­ну слияния плазматических мембран, опоясывающую клетку в апикальной (верхней, смотрящей в просвет кишечника) ее части. Таким образом, каждая клетка пласта как бы обведена лентой этого контакта. Такие структуры при специальных окрасках мож­но видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Оказалось, что в данном слу­чае роль замыкающего контакта заключается не только в механи­ческом соединении клеток друг с другом. Эта область – контакта непроницаема для макромолекул и ионов и тем самым, она запи­рает, перегораживает межклеточные полости (и вместе с ними соб­ственно внутреннюю среду организма) от внешней среды (в дан­ном случае просвет кишечника)

Замыкающий или плотный контакт встречается между всеми типами эпителия (эндотелий, мезотелий, эпендима)

Промежуточный контакт (или зона слипания) В этом месте межмембранное расстояние несколько “расширено (до 25 — 30 нм) и

в отличие от простого контакта заполнено плотным содержимым, вероятнее всего, белковой природы. Это межмембранное вещество

разрушается протеиназами и исчезает после удаления кальция. Со стороны цитоплазмы в этом месте видно скопление тонких микрофибрилл 4—7 нм толщиной, располагающихся в виде се­ти на глубину до 0,3—0,5 мкм, что создает высокую электронную плотность всей структуры, которая сразу же бросается в глаза при изучении таких контактов в электронном микроскопе. Суще­ствует несколько типов этого контакта. Один из них, зона слипания, образует поясок, или ленту, вокруг клетки. Часто такой по­ясок идет сразу же за зоной плотного контакта. Часто встречает­ся, особенно в покровном эпителии, так называемая десмосома.Последняя представляет собой небольшую площадку диаметром до 0,5 мкм, где между мембранами располагается область с вы­сокой электронной плотностью, иногда имеющая слоистый вид. К плазматической мембране в зоне десмосомы со стороны” цитоплазмы прилегает участок электронноплотного вещества, так что внутренний слой мембраны кажется утолщенным. Под утолщени­ем находится область тонких фибрилл, которые могут быть погру­жены в относительно плотный матрикс. Эти фибриллы (в случае покровного эпителия тонофибриллы) часто образуют петли и возвращаются в цитоплазму. В целом области десмосомы видны в электронном микроскопе как темные пятна, симметрично распо­ложенные на плазматических мембранах соседних клеток. Десмо­сомы удалось выделить в виде отдельной фракции из покровного эпителия.

Функциональная роль десмосом заключается главным образом в механической связи между клетками. Богатство десмосомами клеток покровного эпителия дает ему возможность быть жесткой и одновременно эластичной тканью.

Контакты промежуточного типа встречаются не только среди эпителиальных клеток. Сходные структуры обнаружены между клетками гладкой мускулатуры, между клетками мышц сердца

У беспозвоночных животных помимо указанных типов соединений встречаются перегородчатые десмосомы. В этом случае межмембранное пространство заполне­но плотными перегородками, идущими перпендикулярно мембранам. Эти перегородки (септы) могут иметь вид лент или пчелиных сот (сотовидная десмосома)

Щелевидный контактпредставляет собой область протяженностью 6,5—3 мкм, где плазматические мембраны разделены про­межутком в 2—3 нм, что после осмирования придает всей этой структуре семислойный вид. Со стороны цитоплазмы никаких спе­циальных примембранньтх структур не обнаруживается. Этот тип соединения встречается во всех типах тканей. Функциональная роль щелевидного контакта заключается, видимо, в передаче ионов и молекул от клетки к клетке. Например, в сердечной мышце передача потенциала действия от клетки к клетке происходит через этот тип контакта, где ионы могут свободно переходить по этим межклеточным соединениям. Поддержание такой ионной связи между клетками зависит от энергии, получаемой благодаря окислительному фосфорилированию.

Синаптический контакт (синапсы) Этот тип контактов характерен

для нервной ткани и встречается как между двумя нейронами

Читайте также:  Дилатация сосудов желудочков и предсердий - это что: расширение сосудов сердца и головного мозга

так и между нейроном и каким-либо иным элементом – рецептором

или эффектором (например, нервно-мышечное окончание).

Синапсы — участки контактов двух клеток, специализированных

для односторонней передачи возбуждения или торможения от

одного элемента к другому.

Типы синапсов: 1- пресинаптическая мембрана (мембрана отростка нервной клетки); 2 – постсинаптическая мембрана; 3 – синаптическая щель; 4 – синаптические пузырьки; 5 – митохондрии

В принципе подобного рода

функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевидным контактом в сердечной мышце) однако в синаптической связи достигается высокая эффективность и подвижность реализации импульса. Синапсы образуются на отростках нервных клеток – это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют вид грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки

нервных клеток (аксоны) образуют специфические контакты с

клетками-эффекторами или клетками-рецепторами. Следовательно, синапс — это структура, образующаяся между участками двух клеток, так же как и десмосома Мембраны этих клеток разде­лены межклеточным пространством синаптической щелью шириной около 20 — 30 нм Часто в просвете этой щели виден тонко­волокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического кон­такта одной клетки называется пресинаптической, другой, воспри­нимающей импульс, — постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пре­синаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит

толще обычных мембран из-за скопления около нее со стороны

цитоплазмы множества тонких фибрилл.

Синаптические нервные окончания удается выделить при фракционировании клеточных компонентов нервной ткани. При этом оказывается, что структура синапса очень устойчива: после раз­рушения клеток участки контактов отростков двух соседних кле­ток отрываются, но не разъединяются. Тем самым можно считать, что синапсы помимо функции передачи нервного возбуждения обе­спечивают жесткое соединение поверхностей двух взаимодействую­щих клеток.

Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки. Диаметр этих каналов обычно составляет 40—50 нм. Ограничи­вающая эти каналы мембрана непосредственно переходит в плаз­матические мембраны соседствующих клеток. Плазмодесмы про­ходят сквозь клеточную стенку, разделяющую клетку. Таким об­разом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет пол­ного разграничения, отделения тела одной клетки от другой, это скорее представляет из себя синцитий’ объединение многих клеточ­ных территорий с помощью цитоплазматических мостиков. Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума сосед них клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У толь­ко что разделившихся клеток число плазмодёсм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодёсм очень велика, с их помо­щью обеспечивается межклеточная циркуляция растворов, содер­жащих питательные вещества, ионы и другие соединения. По плазмодесмам могут перемещаться липидные капли. Через плазмодес­мы происходит заражение клеток растительными вирусами.

Не нашли то, что искали? Воспользуйтесь поиском:

Межклеточные контакты

У многоклеточных организмов за счет межклеточных взаимодействий образуются сложные клеточные ансамбли, поддержание которых может осуществляться разными путями. В зародышевых, эмбриональных тканях, особенно на ранних стадиях развития, клетки остаются в связи друг с другом за счет способности их поверхностей слипаться. Это свойство адгезии (соединения, сцепления) клеток может определяться свойствами их поверхности, которые специфически взаимодействуют друг с другом. Механизм этих связей достаточно хорошо изучен, он обеспечивается взаимодействием между гликопротеидами плазматических мембран.

Кроме сравнительно простых адгезивных (но специфических) связей существует целый ряд специальных межклеточных структур, контактов или соединений, которые выполняют определенные функции.

Запирающее или плотное соединение характерно для однослойных эпителиев (Рис.9). Это зона, где внешние слои двух плазматических мембран максимально сближены. Часто видна трехслойность мембраны в этом контакте: два внешних осмофильных слоя обеих мембран как бы сливаются в один общий слой толщиной 2-3 нм.

Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Такие структуры при специальных окрасках можно видеть и в световом микроскопе. Они получили у морфологов название замыкающих пластинок. Роль замыкающего плотного контакта заключается не только в механическом соединении клеток друг с другом. Эта область контакта плохо проницаема для макромолекул и ионов, и тем самым она запирает, перегораживает межклеточные полости, изолируя их (и вместе с ними собственно внутреннюю среду организма) от внешней среды (в данном случае – просвет кишечника).

Замыкающий, или плотный, контакт встречается между всеми типами однослойного эпителия (эндотелий, мезотелий, эпендима).

Простой контакт, встречающийся среди большинства прилегающих друг к другу клеток различного происхождения (Рис.10). Большая часть поверхности контактирующих клеток эпителия также связана с помощью простого контакта, где плазматические мембраны, соприкасающихся клеток разделены пространством 15-20 нм. Это пространство представляет собой надмембранные компоненты клеточных поверхностей. Ширина щели между мембранами клеток может быть и больше 20 нм, образуя расширения, полости, но не меньше 10 нм.

Со стороны цитоплазмы к этой зоне плазматической мембраны не примыкают никакие специальные дополнительные структуры.

Зубчатый контакт («замок»)представляет собой выпячивание поверхности плазматической мембраны одной клетки в инвагинат (впячивание) другой (Рис.11).

На срезе такой тип соединения напоминает плотничий шов. Межмембранное пространство и цитоплазма в зоне «замков» имеют те же характеристики, что и в зонах простого контакта. Такой тип межклеточных соединений характерен для многих эпителиев, где он соединяет клетки в единый пласт, способствуя, их механическому скреплению друг с другом.

Роль механического плотного скрепления клеток друг с другом играет ряд специальных структурированных межклеточных соединений.

Десмосомы, структуры в виде бляшек или кнопок также соединяют клетки друг с другом (Рис.12). В межклеточном пространстве здесь также виден плотный слой, представленный взаимодействующими интегральными мембранными кадгеринами – десмоглеинами, которые сцепляют клетки друг с другом.

С цитоплазматической стороны к плазмолемме прилежит слой белка-десмоплакина, с которым связаны промежуточные филаменты цитоскелета. Десмосомы встречаются чаще всего в эпителиях, в этом случае промежуточные филаменты содержат кератины. В сердечной мышце клетки, кардиомиоциты, содержат десминовые фибриллы в составе десмосом. В эндотелии сосудов в состав десмосом входят виментиновые промежуточные филаменты.

Полудесмосомы, в принципе, сходны по строению с десмосомой, но представляют собой соединение клеток с межклеточными структурами. Так в эпителиях линкерные гликопротеиды (интегрины) десмосомы взаимодействуют с белками т.н. базальной мембраны, куда входят коллаген, ламинин, протеогликаны и др.

Функциональная роль десмосом и полудесмосом сугубо механическая – они сцепляют клетки друг с другом и с подлежащим внеклеточным матриксом прочно, что позволяет эпителиальным пластам выдерживать большие механические нагрузки.

Подобно этому десмосомы прочно связывают друг с другом клетки сердечной мышцы, что позволяет им выполнять огромную механическую нагрузку, оставаясь связанными в единую сокращающуюся структуру.

В отличие от плотного контакта все типы сцепляющих контактов проницаемы для водных растворов и не играют никакой роли в ограничении диффузии.

Щелевые контакты (нексусы) считаются коммуникационными соединениями клеток; это структуры, которые участвуют в прямой передаче химических веществ из клетки в клетку, что может играть большую физиологическую роль не только при функционировании специализированных клеток, но и обеспечивать межклеточные взаимодействия при развитии организма, при дифференцировке его клеток (Рис.13).

Характерным для этого типа контактов является сближение плазматических мембран двух соседних клеток на расстояние 2-3 нм. Именно это обстоятельство долгое время не позволяло на ультратонких срезах отличить данный вид контакта от плотного разделительного (замыкающего) контакта. При использовании гидроокиси лантана было замечено, что некоторые плотные контакты пропускают контрастер. В этом случае лантан заполнял тонкую щель шириной около 3 нм между сближенными плазматическими мембранами соседних клеток. Это и послужило появлению термина – щелевой контакт. Дальнейший прогресс в расшифровке его строения был достигнут при использовании метода замораживания-скалывания. Оказалось, что на сколах мембран зоны щелевых контактов (размеров от 0,5 до 5 мкм) усеяны гексагонально расположенными с периодом 8-10 нм частицами 7-8 нм в диаметре, имеющими в центре канал около 2 нм шириной. Эти частицы получили название коннексонов.

В зонах щелевого контакта может быть от 10-20 до нескольких тысяч коннексонов в зависимости от функциональных особенностей клеток. Коннексоны были выделены препаративно, они состоят из шести субъединиц коннектина – белка с молекулярным весом около 30 тыс. Объединяясь друг с другом, коннектины образуют цилиндрический агрегат – коннексон, в центре которого располагается канал.

Отдельные коннексоны встроены в плазматическую мембрану так, что прободают ее насквозь. Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки так, что каналы двух коннексонов образуют единое целое. Коннексоны играют роль прямых межклеточных каналов, по которым ионы и низкомолекулярные вещества могут диффундировать из клетки в клетку. Было обнаружено, что коннексоны могут закрываться, изменяя диаметр внутреннего канала, и тем участвовать в регуляции транспорта молекул между клетками.

Функциональное значение щелевых контактов было понято при изучении гигантских клеток слюнных желез двукрылых. В такие клетки благодаря их величине легко можно вводить микроэлектроды, для того чтобы изучать электропроводимость их мембран. Если ввести электроды в две соседние клетки, то их плазматические мембраны проявляют низкое электрическое сопротивление, между клетками идет ток. Такая способность щелевых контактов служить местом транспорта низкомолекулярных соединений используется в тех клеточных системах, где нужна быстрая передача электрического импульса (волны возбуждения) от клетки к клетке без участия нервного медиатора. Так, все мышечные клетки миокарда сердца связаны с помощью щелевых контактов (кроме того, клетки там связаны и адгезивными контактами). Это создает условие для синхронного сокращения огромного количества клеток.

При росте культуры эмбриональных сердечных мышечных клеток (кардиомиоциты) некоторые клетки в пласте начинают независимо друг от друга спонтанно сокращаться с разной частотой, и лишь только после образования между ними щелевых контактов они начинают биться синхронно как единый сокращающийся пласт клеток. Таким же способом обеспечивается совместное сокращение гладкомышечных клеток в стенке матки.

Синаптический контакт (синапсы). Этот тип контактов характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом – рецептором или эффектором (например, нервно-мышечное окончание) (Рис.14).

Рис.9. Плотный контактРис.10. Простой контакт
Рис. 11. Зубчатый контактРис.12. Десмосомы
Рис.13. НексусыРис. 14. Синаптический контакт

Синапсы – участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. В принципе подобного рода функциональная нагрузка, передача импульса может осуществляться и другими типами контактов (например, щелевым контактом в сердечной мышце), однако в синаптической связи достигается высокая эффективность в реализации нервного импульса.

Читайте также:  Билирубин это что и какой билирубин у новорожденных считается нормой: показатели в крови и моче

Синапсы образуются на отростках нервных клеток – это терминальные участки дендритов и аксонов. Межнейронные синапсы обычно имеют грушевидных расширений, бляшек на конце отростка нервной клетки. Такое терминальное расширение отростка одной из нервных клеток может контактировать и образовывать синаптическую связь как с телом другой нервной клетки, так и с ее отростками. Периферические отростки нервных клеток (аксоны) образуют специфические контакты с клетками-эффекторами или клетками-рецепторами. Следовательно, синапс – это структура, образующаяся между участками двух клеток (так же как и десмосома). Мембраны этих клеток разделены межклеточным пространством – синаптической щелью шириной около 20-30 нм. Часто в просвете этой щели виден тонковолокнистый, перпендикулярно расположенный по отношению к мембранам материал. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой, воспринимающей импульс, – постсинаптической. В электронном микроскопе обе мембраны выглядят плотными, толстыми. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей, синаптических пузырьков, заполненных медиаторами. Синаптические пузырьки в момент прохождения нервного импульса выбрасывают свое содержимое в синаптическую щель. Постсинаптическая мембрана часто выглядит толще обычных мембран из-за скопления около нее со стороны цитоплазмы множества тонких фибрилл.

Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые цитоплазматические каналы, соединяющие две соседние клетки (Рис.15). Диаметр этих каналов обычно составляет 20-40 нм. Ограничивающая эти каналы мембрана непосредственно переходит в плазматические мембраны соседствующих клеток.

Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. Таким образом, у некоторых растительных клеток плазмодесмы соединяют гиалоплазму соседних клеток, поэтому формально здесь нет полного разграничения, отделения тела одной клетки от другой, это скорее представляет собой синцитий: объединение многих клеточных территорий с помощью цитоплазматических мостиков.

Внутрь плазмодесм могут проникать мембранные трубчатые элементы, соединяющие цистерны эндоплазматического ретикулума соседних клеток. Образуются плазмодесмы во время деления клетки, когда строится первичная клеточная оболочка. У только что разделившихся клеток число плазмодесм может быть очень велико (до 1000 на клетку), при старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки.

Функциональная роль плазмодесм очень велика: с их помощью обеспечивается межклеточная циркуляция растворов, содержащих питательные вещества, ионы и другие соединения.

По плазмодесмам могут перемещаться липидные капли. Через плазмодесмы происходит заражение клеток растительными вирусами. Однако эксперименты показывают, что свободный транспорт через плазмодесмы ограничивается частицами с массой не более 800 дальтон. Рис.15. Плазмодесмы

Дата добавления: 2015-08-08 ; просмотров: 11610 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Десмосома и клетка – что такое межклеточные контакты и взаимодействия с помощью десмосома

• Основная функция десмосом заключается в обеспечении структурной целостности слоев клеток эпителия за счет связывания их сетей промежуточных филаментов

• Десмосомы являются компонентами контактного комплекса

• В десмосомах находится, по меньшей мере, семь белков. Молекулярный состав десмосом различается в зависимости от типа клеток и тканей

• Десмосомы функционируют как адгезивные структуры и как комплексы передачи сигнала

• Мутации в белках, входящих в состав десмосом, снижают прочность эпителиальных структур. Эти мутации могут оказаться летальными, особенно если они затрагивают структуру кожи

Десмосомы являются компонентом контактного комплекса эпителиальных клеток. Они также присутствуют между клетками неэпителиального происхождения, например клетками миокарда, печени, селезенки и некоторыми клетками нервной системы. В электронном микроскопе можно наблюдать три характерных особенности десмосом:

• Массивные скопления фибрилл, проходящие через щель (в середине десмосомы, около 30 нм в ширину) между плазматическими мембранами двух рядом расположенных клеток.

• Эти фибриллы прикреплены к толстой бляшке электронно-плотного материала, расположенной на цитозольной стороне плазматической мембраны.

• Бляшки, состоящие из электронно-плотного материала, прикреплены к филаментам цитозоля каждой клетки.

Плотный материал, присутствующий на плазматической мембране, состоит из двух структур, внутренней и наружной плотных бляшек. Каждая десмосома довольно мала (средний диаметр составляет около 0,2 мкм), и на участке контакта двух клеток можно видеть несколько десмосом.

Структура десмосомы напоминает подвесной мост: филаменты цитозоля двух соседних клеток связаны между собой посредством внеклеточных филаментов, прикрепленных к «якорным» структурам на плазматической мембране. Поэтому контакт был назван десмосомой, от двух греческих слов: desmos (связь, скрепление, цепь) и soma (тело). Очевидно, что назначение такой структуры состоит в связывании двух клеток друг с другом.

Какими клеточными функциями обладает такой контакт? Вспомним две основные функции контактного комплекса, представленного на рисунке ниже: контроль межклеточного транспорта и обеспечение устойчивости к физическим нагрузкам, которые воздействуют на ткань эпителия. Поскольку десмосомы особенно характерны для клеток, подвергающихся физическим нагрузкам, например для клеток кожи и сердечной мышцы, биологи думали, что в основном им свойственна вторая из вышеуказанных функций.

В соответствии с этим, цитоплазматические филаменты, прикрепленные к плотным бляшкам, были названы тонофиламентами, что должно было отражать приложенную к ним нагрузку (от греч. tonos). Позже оказалось, что эти филаменты являются промежуточными филаментами, т. е. представляют собой основной класс цитоскелетных структур, хотя иногда их все еще называют тонофиламентами.

Помимо фибрилл промежуточных филаментов, в десмосомах идентифицировано, по меньшей мере, еще семь других типов белков, которые организованы в три семейства. Три из них (десмоглеин, десмоколин 1 и десмоколин 2) относятся к подсемейству кадгериновых рецепторов. Эти белки представляют собой основные трансмембранные белки десмосом и являются главными компонентами наружных плотных бляшек.

Белки десмосомы распределяются в плазматической мембране и в двух бляшках,
расположенных на поверхности клеток.

Они образуют «связующие филаменты», проходящие через межклеточное пространство, и служат сайтами связывания для цитоплазматических белков, представителей семейства armadillo (плакоглобина, плакофилинов) и семейства плакина (десмоплакина). Десмоплакин, в свою очередь, связывается с белками промежуточных филаментов во внутренней плотной бляшке.

Тонкая структура десмосомы, а также число образующихся десмосом в разных типах клеток варьирует, что отражает разнообразие нагрузок, которые должны выдерживать клетки.

В общем, десмосому можно уподобить «точечной сварке» двух клеток. Наряду с такой структурной ролью, белки десмосомы также играют важную сигнальную роль на поверхности клеток. Например, плакоглобин представляет собой белок, родственный b-катенину, который связывается с «классическими» кадгеринами адгезивного контакта. b-катенин является структурным белком адгезивного контакта, и также способен передавать сигналы в ядро клетки.

Аналогичным образом, при активации сигнальных рецепторов на поверхности клеток, плакоглобин и плакофилины начинают поступать в ядро, а плакоглобин даже непосредственно связывается с рецепторами фактора роста. В результате этого десмосомы могут контролировать экспрессию многих генов и оказывать существенное влияние на функцию внутриклеточных белков, включая белки других контактов.

Наиболее показательным примером, иллюстрирующим значение функционирования десмосом, является нарушение их структуры. В этом случае слои эпителия становятся очень непрочными, что приводит к легкой травмируемости органов, который они покрывают. Особенно это проявляется в случае кожи, склонной к образованию волдырей.

Под микроскопом видно, что, если между эпителиальными клетками отсутствуют десмосомы, то они плохо организованы, не имеют контактных комплексов и расположены небольшими группами, а не образуют единый непрерывный слой.

При разрушении или утрате десмосомальных контактов развивается ряд заболеваний, которые по своей этиологии подразделяются на две группы. Такие генодерматозы, как, например, ладонно-подошвенная кератодерма или контактный буллезный эпидермолиз, развиваются вследствие мутаций в белках десмосом или полудесмосом соответственно. Аутоиммунные буллезные дерматозы, например вульгарная пузырчатка (pemphigus vulgaris) или буллезный пемфигоид (bullous pemphigoid), возникают, когда у больных образуются аутоантитела к белкам своих десмосом или полудесмосом соответственно.

При болезнях обеих групп наблюдаются глубокие нарушения структуры и функции межклеточных контактов, и заболевание может приводить к смертельному исходу.

Для диагностики и лечения этих заболеваний используют комбинацию методов молекулярной генетики и тканевой инженерии. Мутации в генах белков десмосом обнаруживаются при пренатальном скрининге Это возможно по крайней мере при генодерматозных заболеваниях. При анализе образца плодной ткани методом ПЦР амплифицируется изучаемый ген (например, десмоколин-1). Затем с учетом полиморфизма длины фрагмента рестрикции и/или путем Саузерн-блоттинга анализируется ДНК.

Сейчас методы лечения пациентов с этими заболеваниями в основном сводятся к проведению мероприятий по защите кожных покровов и к соблюдению условий, исключающих образование волдырей. Для больных характерно плохое качество жизни. В настоящее время для лечения болезней, связанных с дисфункцией десмосомальных контактов, исследуется возможность применения искусственной кожи. При замещении поврежденных участков кожи лоскутом, представляющим собой слой здоровых клеток, интегрированных в искусственный внеклеточный матрикс, ученые надеются получить более стабильный и устойчивый к травме кожный покров, способный формировать нормальные десмосомы.

Межклеточные контакты

Плазмолемма многоклеточных организмов активно участвует в образовании специальных структур — межклеточных контактов, или соединений.

Поверхности клеток содержат специальные углеводные части интегральных белков, гликопротеинов, которые специфически связываются с подобными белками на поверхности соседних клеток.

Среди контактов выделяют следующие:

  • простые, которые могут формировать различные по форме соединения;
  • сложные: десмосомальные, щелевидные, плотные контакты, синапсы и адгезивные пояски.

Простой контакт. Это область взаимодействия надмембранных комплексов плазмолеммы (гликокаликсов клеток). Расстояние между контактами составляет около 15 нм. Контакты обеспечивают адгезию (прилипание) клеток друг к другу в результате взаимного «узнавания». На гликокаликсе имеются специальные рецепторные комплексы, строго индивидуальные для каждого организма.

Формирование рецепторных комплексов специфично в пределах отдельных тканей и популяций клеток. Данные комплексы представлены кадгеринами и интегринами, которые имеют сродство с подобными структурами соседних клеток. Взаимодействуя с родственными молекулами на прилежащих цитомембранах, они прилипают друг к другу — адгезия.

Среди адгезивных белков выделяют несколько семейств: интегрины, селектины, иммуноглобулины (иммуноглобулинподобные белки) и кадгерины. Некоторые адгезивные белки не относятся ни к одному из приведенных семейств.

Часть гликопротеинов поверхностного аппарата клетки относи: к главному комплексу гистосовместимости первого класса (МНС I — major histocompatibility complex I). Они, как и интегрины, строго индивидуальны для каждого организма и специфичны для тканей, в которых находятся. Некоторые из веществ встречаются лишь в определенных тканях, так Е-кадгерины специфичны для эпителия.

Интегрины — это интегральные белки, состоящие из двух (α- и β-) субъединиц. Известно 10 вариантов β- и 15 видов β-субъединиц. Внутриклеточные участки (домены) связаны с тонкими микрофиламентами при помощи специальных белков: винкулина, танина или напрямую с актином.

Селектины — это мономерные белки, которые узнают и прикрепляются к определенным углеводным комплексам на поверхности клеток. Наиболее изучены L-, Р- и Е-селектины.

Адгезивные иммуноглобулинподобные белки по строению напоминают классические антитела. Часть из них выступает в качестве рецепторов при иммунологических реакциях, другая выполняет лишь адгезивные функции.

Кадгерины отличаются тем, что их адгезивная способность проявляется лишь в присутствии ионов кальция. Они участвуют в формировании постоянных клеточных контактов: Е- и Р-кадгерины в эпителии, а N-кадгерины в нервной и мышечной тканях.

Читайте также:  Понятие о фибропластическом диатезе: как появляется и чем его лечить

Функция простых контактов далеко не ограничена лишь простым механическим сцеплением. Они необходимы для нормального функционирования клеток и тканевых структур, в образовании которых участвуют. Такие контакты контролируют созревание и миграцию клеток, предотвращают излишние митозы (гиперплазию).

Клетки могут образовывать разнообразные по конфигурации соединения: в форме «черепицы» (в роговом слое многослойного плоского ороговевающего эпителия, в эндотелии артерий); зубчатое, или пальцевидное («замок», или интердигитация). Зубчатое соединение отличается тем, что выпячивание одной клетки погружается во впячивание другой. Такая связь значительно усиливает механическую прочность прикрепления клеток.

Сложные контакты. Они специализированы для выполнения какой-либо функции. Сложные межклеточные контакты представляют собой небольшие парные специализированные участки плазматических мембран двух соседних клеток.

Сложные контакты подразделяют на запирающие (изолирующие), сцепляющие (заякоривающие) и коммуникационные (объединяющие). Имеются сложные контакты, обеспечивающие механическое сцепление клеток: десмосомы и пояски сцеплений (адгезивные пояски, или промежуточные контакты).

Десмосома представляет собой сложное макромолекулярное образование, обеспечивающее прочное сцепление соседних клеток между собой. Контакт хорошо заметен при электронной микроскопии, так как отличается высокой электронной плотностью. Этот локальный участок имеет форму диска диаметром около 0,5 мкм, в котором мембраны соседних клеток располагаются на расстоянии 30…40 нм.

Участки с высокой электронной плотностью видны на внутренних поверхностях мембран обеих взаимодействующих между собой клеток. К этим участкам прикрепляются промежуточные филаменты. В эпителиальной ткани промежуточные филаменты представлены тонофиламентами, образующими скопления — тонофибриллы. Тонофиламснты содержат цитокератины. Имеется также электронно-плотная зона между мембранами, соответствующая сцеплению белковых комплексов соседних клеток.

Чаще всего десмосомы встречаются в эпителии, но они имеются и в других тканях. В этом случае промежуточные филаменты содержат вещества, характерные для этой ткани: виментины в клетках соединительных тканей, десмины в мышцах и т. д.

На макромолекулярном уровне внутренняя поверхность десмосомы представлена опорными белками десмоплакинами. К ним прикрепляются промежуточные филаменты. В свою очередь, десмоплакины соединены с белками десмоглеинами через плакоглобины. Такое тройное соединение пронзает липидный слой мембраны. Десмоглеины, в свою очередь, связаны с подобными белками соседней клетки. Может быть и другой вариант: десмоплакины прикрепляются к интегральным белкам мембраны — десмоколинам, которые, в свою очередь, взаимодействуют с подобными белками соседней цитомембраны.

Поясок сцепления, или поясная десмосома (промежуточный контакт, ленточная десмосома) представляет собой механическое соединение между клетками (подобно десмосоме). В отличие от десмосомы имеет форму ленты. Поясок сцепления как ободок охватывает цитолемму вкупе с соседними клеточными мембранами. Контакт имеет высокую электронную плотность как в области мембран, так и в участке межклеточного вещества, аналогично десмосоме.

Для поясков сцепления характерен опорный белок винкулин, который служит местом прикрепления тонких микрофиламентов к внутренней поверхности цитомембраны. Другие структурные белки и их взаимодействия близки к десмосоме.

Адгезивный поясок встречается в апикальной зоне однослойного эпителия, часто примыкая к плотному контакту. Особенностью данного контакта является то, что к нему прикрепляются актиновые микрофиламенты, которые располагаются параллельно поверхности клеточной мембраны. Их способность сокращаться в присутствии минимиозинов и нестабильность позволяют значительно изменять форму целого пласта эпителиальных клеток и микрорельеф поверхности выстилаемого органа.

Щелевидный контакт, или нексус имеет форму диска протяженностью 0,5…3 мкм. В области щелевидного контакта соседние мембраны приближены друг к другу до 2…4 нм. В мембраны обеих контактирующих клеток встроены интегральные белки коннектины, которые интегрируются в комплексы из шести белков — коннексоны.

Коннексоновые комплексы соседних клеток прилежат друг к другу. В центральной части коннексона находится пора, через которую могут свободно диффундировать ряд молекул молекулярной массой до 2000. Поры соседних клеток плотно присоединены друг к другу, в результате чего перемещающиеся молекулы (неорганические ионы, вода, мономеры, низкомолекулярные биологически активные вещества) попадают только в соседнюю клетку, а не в межклеточное вещество.

Щелевидные контакты позволяют передать возбуждение к соседним клеткам (между нейронами, кардиомиоцитами, гладкими миоцитами и т. д.), через них из одной клетки в другую перемещаются некоторые биологически активные вещества и метаболиты. Нексусы обеспечивают единство биологических реакций клеток в тканях. В нервной ткани щелевидные контакты называют электрическими синапсами.

Значение нексусов заключается в формировании внутритканевого межклеточного контроля над биологической активностью клеток, выполнении ими ряда специфических функций. Без щелевидных контактов невозможны были бы единое сокращение кардиомиоцитов сердца, синхронные реакции гладких мышечных клеток и др.

Запирающая зона, или плотный контакт, представляет собой участок слияния поверхностных слоев мембран соседних клеток. Участки слияния образуют непрерывную сеть, «сшитую» интегральными белками мембран соседних клеток. Интегральные белки образуют структуру, напоминающую ячеистую сеть. Она окружает в виде пояска весь периметр клетки, соединяя поверхности соседних клеток.

Нередко к плотному контакту прилежат ленточные десмосомы. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает межклеточные щели и вместе с ними собственно внутреннюю среду организма от внешней среды. Запирающая зона препятствует диффузии веществ, например содержимого полости желудка от внутренней среды стенки желудка, перемещению белковых комплексов от свободной поверхности эпителия в участки межклеточного пространства; способствует поляризации клетки.

Плотные контакты — это основа многочисленных барьеров организма. При их наличии вещества в соседние среды переносятся только через клетку.

Синапсы — это специализированные контакты, имеющиеся в нервных клетках (нейронах) и обеспечивающие передачу информации от одной клетки к другой. Этот тип соединений встречается в специализированных участках как между двумя нейронами, так и между нейроном и каким-либо иным элементом, входящим в состав рецептора или эффектора, например нервно-мышечные, нервно-эпителиальные синапсы.

Синапсы подразделяют на электрические (аналогичные щелевидным соединениям) и химические.

Адгезивные соединения с межклеточным веществом. Адгезия (прилипание, сцепление) клеток к межклеточному веществу осуществляется через рецепторы цитолеммы к адгезивным белкам. Так, рецепторы к ламинину и фибронектину в эпителиальных клетках обеспечивают связь с этими гликопротеинами. Фибронектин и ламинин — адгезивные субстраты с фибриллярным компонентом базальных мембран (коллагеновыми волокнами IV типа).

Полудесмосома. Со стороны клетки строение и биохимический состав полудесмосомы аналогичны десмосоме. В межклеточное вещество от клетки отходят якорные филаменты, которые объединяют мембрану клетки с фибриллярным каркасом базальной мембраны и «заякоривающими» фибриллами коллагена VII типа.

Фокальный (точечный) контакт. Его относят к сцепляющим соединениям. Фокальный контакт характерен для фибробластов. В этом случае клетка соединяется не с соседней клеткой, а со структурами межклеточного вещества. Рецепторные белки клетки взаимодействуют с так называемыми адгезивными молекулами (фибронектин, хондронектин и т. д.), связывающими мембраны клетки с внеклеточными волокнами. В образовании фокального контакта участвуют актиновые микрофиламенты, которые прикрепляются к внутренней поверхности цитолеммы с помощью интегральных белков клеточных мембран.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Межклеточные контакты

плазматическая мембрана липопротеиновый рецепторный

У многоклеточных животных организмов плазмолемма принимает участие в образовании межклеточных соединений, обеспечивающих межклеточные взаимодействия. Различают несколько типов таких структур.

§ Простой контакт. Простой контакт встречается среди большинства прилежащих друг к другу клеток различного происхождения. Представляет собой сближение плазмолемм соседних клеток на расстояние 15-20 нм. При этом происходит взаимодействие слоев гликокаликса соседних клеток.

§ Плотный (замыкающий) контакт. При таком соединении внешние слои двух плазмолемм максимально сближены. Сближение настолько плотное, что происходит как бы слияние участков плазмолемм двух соседних клеток. Слияние мембран происходит не по всей площади плотного контакта, а представляет собой ряд точечных сближений мембран. Роль плотного контакта заключается в механическом соединении клеток друг с другом. Эта область непроницаема для макромолекул и ионов и, следовательно, она запирает, отграничивает межклеточные щели (и вместе с ними собственно внутреннюю среду организма) от внешней среды.

§ Пятно сцепления, или десмосома. Десмосома представляет собой небольшую площадку диаметром до 0,5 мкм. В зоне десмосомы со стороны цитоплазмы находится область тонких фибрилл. Функциональная роль десмосом в основном заключается в механической связи между клетками.

§ Щелевой контакт, или нексус. При таком типе контакта плазмолеммы соседних клеток на протяжении 0,5-3 мкм разделены промежутком в 2-3 нм. В структуре плазмолемм располагаются специальные белковые комплексы (коннексоны). Одному коннексону на плазматической мембране клетки точно противостоит коннексон на плазматической мембране соседней клетки. В результате образуется канал из одной клетки в другую. Коннексоны могут сокращаться, изменяя диаметр внутреннего канала, и тем самым участвовать в регуляции транспорта молекул между клетками. Этот тип соединения встречается во всех группах тканей. Функциональная роль щелевого контакта заключается в переносе ионов и мелких молекул от клетки к клетке. Так, в сердечной мышце возбуждение, в основе которого лежит процесс изменения ионной проницаемости, передается от клетки к клетке через нексус.

§ Синаптический контакт,или синапс. Синапсы – участки контактов двух клеток, специализированных для односторонней передачи возбуждения или торможения от одного элемента к другому. Этот тип соединений характерен для нервной ткани и встречается как между двумя нейронами, так и между нейроном и каким-либо иным элементом. Мембраны этих клеток разделены межклеточным пространством – синаптической щелью шириной около 20-30 нм. Мембрана в области синаптического контакта одной клетки называется пресинаптической, другой – постсинаптической. Около пресинаптической мембраны выявляется огромное количество мелких вакуолей (синаптических пузырьков), содержащих медиатор. В момент прохождения нервного импульса синаптические пузырьки выбрасывают медиатор в синаптичекую щель. Медиатор взаимодействует с рецепторными участками постсинаптической мембраны, что в конечном итоге приводит к передаче нервного импульса. Кроме передачи нервного импульса синапсы обеспечивают жесткое соединение поверхностей двух взаимодействующих клеток.

§ Плазмодесмы. Этот тип межклеточных связей встречается у растений. Плазмодесмы представляют собой тонкие трубчатые каналы, соединяющие две соседние клетки. Диаметр этих каналов составляет обычно 40-50 нм. Плазмодесмы проходят сквозь клеточную стенку, разделяющую клетки. В молодых клетках число плазмодесм может быть очень велико (до 1000 на клетку). При старении клеток их число падает за счет разрывов при увеличении толщины клеточной стенки. Функциональная роль плазмодесм заключается в обеспечении межклеточной циркуляции растворов, содержащих питательные вещества, ионы и другие соединения. Через плазмодесмы происходит заражение клеток растительными вирусами.

Специализированные структуры плазматической мембраны

Плазмолемма многих клеток животных образует выросты различной структуры (микроворсинки, реснички, жгутики). Наиболее часто на поверхности многих животных клеток встречаются микроворсинки. Эти выросты цитоплазмы, ограниченные плазмолеммой, имеющие форму цилиндра с закругленной вершиной. Микроворсинки характерны для клеток эпителиев, но обнаруживаются и у клеток других тканей. Диаметр микроворсинок составляет около 100 нм. Число и длина их различны у разных типов клеток. Значение микроворсинок заключается в значительном увеличении площади клеточной поверхности. Это особенно важно для клеток, участвующих во всасывании. Так, в кишечном эпителии на 1 мм 2 поверхности насчитывается до 2х10 8 микроворсинок.

Ссылка на основную публикацию